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SUMMARY

We propose use of a constant-envelope pulse for the
purpose of improving noise-rejection property in chaotic
synchronization-based communication systems. In a con-
ventional system where discrete-time chaotic signals are
transmitted through the pulse amplitude modulation, the
correlator output variance increases as the spreading factor
decreases, while the synchronization error increases as the
spreading factor increases. Therefore, it is difficult to con-
trol the bit error rate only by adjusting the spreading factor.
In the proposed system, use of pulse width modulation
keeps the envelope of transmitted signals constant, which
leads to the correlator output with zero variance. The syn-
chronization error is kept small because the spreading fac-
tor can be set to be one without increasing the correlator
output variance. We have a result of computer simulation
showing that the proposed system achieves a bit error
performance better than the conventional system. In addi-
tion, a new blind adaptive algorithm is proposed which
suppresses intersymbol interference. © 2008 Wiley Peri-
odicals, Inc. Electr Eng Jpn, 163(3): 47-56, 2008; Pub-
lished online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/eej.20318
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1. Introduction

Chaos is a deterministic signal with random behavior,
and the application of chaos to communications has been
studied extensively in recent years [1-9]. Chaotic commu-
nications are attractive because transmitters and receivers
can be configured using relatively simple devices. In addi-
tion, interference-resistant communications can be imple-
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mented by using broadband chaotic signals, and the ran-
domness of chaotic signals contributes to communications
security.

Many chaotic communications systems use chaotic
synchronization, The phenomenon of chaotic synchroniza-
tion means that multiple chaotic systems with different
initial values show similar behavior in the course of time
[1]. Communications based on chaotic synchronization is
a method of modulating and demodulating information by
synchronizing chaotic systems on the transmitter and re-
ceiver sides. Secure communications can be established
because data demodulation requires that the chaotic system
of the transmitter side be known exactly at the receiver side.

Available methods of chaotic communications can be
grouped into chaotic masking [2, 3], chaotic modulation [4,
5], and chaos shift keying (CSK) [6-9]. In terms of digital
information transfer, chaotic masking and chaotic modula-
tion deal basicaltly with analog information, and are disad-
vantageous due to their very low efficiency with respect to
signal power. On the other hand, in CSK, chaotic systems
are switched according to digital information, and optimal
communications by white-noise channels can be expected
due to demodulation using correlation detection.

Thus, CSK is a very interesting method of chaotic
communications, but there are the following two problems
with conventional CSK [8, 9]. First, in the transfer of
discrete-time chaotic signals using puise amplitude modu-
lation (PAM), the signal components at the correlation
detector are varied with every bit, leading to a noise-like
effect. Second, when channel noise and interference exist,
perfect chaotic synchronization cannot be achieved, which
considerably degrades performance. To deal with the latter
problem of CSK, a new method called differential CSK
(DCSK) that does not use chaotic synchronization was
recently proposed. This method shows gaod noise tolerance
and interference immunity [10]. As regards the former
problem, there is a methed that involves obtaining a con-
stant envelope signal by frequency modulation of a continu-
ous-time chaotic signal. This method proves effective in
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solving the problem of correlator output fluctuations [11].
However, DCSK is a reference transmission system in
which the chaotic signal used for data modulation is trans-
mitted subsequent to the data-modulated chaotic signal.
Therefore, demodulation at the receiverend is possible even
without knowing the chaos, and communications is not
secure.

In this study, aiming at better noise-tolerance of com-
munications based on chaotic synchronization, we propose
a chaotic synchronization-based communications system
using constant envelope pulses. The constant envelope
transformation of a discrete-time chaotic signal using pulse
width modulation (PWM) prevents the performance drop
caused by correlator output fluctuations in PAM-based
communications. In addition, one sample of the chaotic
signal is used for every bit of information data, resulting in
low error of chaotic synchronization, and hence better
performance.

In addition, in this paper we consider the problems of
performance deterioration because of intersymbol interfer-
ence. When intersymbol interference exists, perfect chaotic
synchronization is not achieved, and performance drops
considerably. This also holds true for the proposed commu-
nications method. Several techniques have been proposed
to reduce the effect of channel distortion by means of
adaptive equalizers (12, 13). Considering the security and
efficiency of chaotic communications, a blind adaptive
equalizer that does not require a training signal seems
preferable. Here we propose a new blind adaptive algorithm
using the constant envelope characteristic of the PWM
pulses, and demonstrate its effectiveness as a measure
against intersymbol interference in chaotic communica-
tions.

2. Chaotic Synchronization-Based Communications
Using PAM

2.1 Configuration of communications system

In' this study, we consider communications using
discrete-time chaos, which offers good reproducibility.
In PAM-based chaotic communications, binary informa-
tion data b(i) € {~1, +1),i=0, 1, 2, ... are transmitted
using L samples per bit. The configuration of chaotic
synchronization-based communication using PAM is
shown in Fig. 1.

At the transmitter, chaos is generated by using the
following discrete-time one-dimensional chaotic system:

z(k + 1) = ax(k) + f(y(k)) (1)
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Fig. 1. Chaotic synchronization-based communication
using PAM.

- Here a is a constant with an absolute value below 1,
A-) denotes R' — R' mapping, and {-] denotes a Gaussian
signal. In addition, [k/L] stands for the greatest integer
smaller than &/L. A PAM pulse is generated by a Gaussian
signal x(k):

_ ) zk) -+ 0Lt-kT.<T,
Peam(t,z(k)) = { 0 --- otherwise 3
Here ¢ 2 0 is the time, and T is the PAM pulse duration per
sample of the chaotic signal. The transmitted signal is
obtained by multiplying the PAM pulse train by the infor-
mation data b(i):

wt)=3 b ([%]) Pran(t—kToz(k) @

k=0

In this paper, we call L the spreading factor, as in spread
spectrum (SS) communications. In the communications
channel, zero-mean white Gaussian noise n(f) with a two-
sided power spectrum density of Ny/2 is added, so that the
received signal is

r(t) = u(t) + n(t) (5)

At the receiver, a discrete-time signal is obtained by
integration of the received signal:

1 (k+1)T.
§(k) = ~ / r(t)dt ©6)
Te Jrr,

This Q(k) is used in the input to the chaotic system. The
receiver has the same chaotic system as the transmitter, and
the chaos estimate is generated as follows:




£(k +1) = a(k) + f(§(K)) @)

Consider the behavior of x(k) in Eq. (1) and of X(k) above.
The synchronization error e(k) is expressed as follows:
- e(k) = £(k) — z(k)
=ae(k—-1)
+{f(@(k - 1)) - f(y(k - 1))} ®

In the absence of noise, the integrator output is

CRI(H)EC ©

that is, it is equal to y(k). Therefore, the second term on the
right-hand side of Eq. (8) is zero, and the synchronization
error is
lim e(k)=0 (10)
k—s+00

Hence, synchronization is established. When there is noise,
the second term on the right-hand side of Eq. (8) is not zero,
and perfect synchronization cannot be achieved.

Correlation detection is performed in order to obtain
adataestimate. For this purpose, a replica of the PAM pulse
train is generated from the chaos estimate x(k):

a(t) =Y Ppan (t — kT, 2(k))
k=0

(1)

Using a replica of this u(f), the correlator output V(i) is as
follows:

1 G
V) =7 [T r(t)i(t)dt (12)

Here T, = LT, is the duration of 1 bit. The data estimate is
obtained in the following way:

b(3) = sgn (V(4)) (13)

In perfect chaotic synchronization, that is, if .Q(k) =

x(k), Eq. (12) can be rewritten as
(i+1)L-1

> T.-Ppam(t— kT, z(k))

k=iL
1 T
7_1" iTy
(i4+1)L—1

D, 2k

k=il

] [UHDT
tg /T n(t)i(t)dt
iTy

O ”—:ffg
+ n(t)a(t)de

_ b()
L

(14)

The first term in the above equation stands for the
signal component. However, this signal fluctuates with
every bit, and performance is degraded by this noise-like
action.
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2.2 Problems of PAM-based method

Here we estimate the performance of conventional
PAM-based chaotic communications while varying L at a
fixed bit duration 7,

First, consider the performance when perfect chaotic
synchronization is achieved. Figure 2 shows the bit error
rate as a function of Ey/Ng (E,: signal energy per bit). Here
fx)=2 | xmod !} | — | was used as the chaotic map, and a
= 0 was selected as the optimum value on the basis of
preliminary experiments. As is evident from Fig. 2, the bit
error rate is poor with small L despite the perfect synchro-
nization. Here the variance of the signal component in the
correlator output V; is

| G+DL-1
2 _ 2
Tsig = Var I Z z%(k)

k=iL

= %Var [#%(k)) (15)
The above equation suggests that the bit error rate worsens
with small L because the spread of the signal component
grows.

Now consider the performance when chaotic syn-
chronization is used. Figure 3 shows the bit error rate
characteristic, with the chaotic map being the same as in
Fig. 2. As is evident from Fig. 3, the results are very poor
at L =1, 2, 8. This is because of the large variance of the
correlator output, as explained above. On the other hand,
when L = 64 or higher, the bit rate error worsens as L
increases. The variance of the noise component per sample
of the input 9(1() into the chaotic system increases directly
with L as follows:

bit error rate

Ey ! No [dB]

Fig.2. Biterror rate of conventional system (perfect
synchronization).
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Fig. 3. Bit error rate of conventional system
(chaotic synchronization).

) 1 [T
Onoise = Var T '/k n(t)dt

L

T (16)

Therefore, one may attribute the deterioration of the bit
error rate to the fact that the chaotic synchronization error
increases with L. Hence, a square synchronization error

N
- 1 2
e2=ﬁZe (k) (17
k=0
is shown in Fig. 4 at E,/Ny = 10, 20, 30 dB. As indicated by

the diagram, the synchronization error increases with L.
Now consider the nonsynchronized case when x(k) and
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Fig. 4. Chaotic synchronization error.
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A . .
x(k) are independent uniform random numbers. Here the
square error variance is

E [(2(k) - 2(k))*] = § (18)
As is evident from Fig. 4, the square synchronization error
is about 2/3 for L over 100 when E/N, = 20 dB. Thus, one
may assume that little if any synchronization takes place.

The above indicates that the bit error rate improves
with larger L in the sense that the variance of signal com-
ponent in the correlator output decreases. As is evident from
Fig. 3, the best bit error rate performance is obtained at L =.
64, being below 1073 at 22 dB or greater.

3. Chaotic Communications Using PWM

Applying the constant envelope transformation to the
transmitted signal assures zero variance of the correlator
output, thus solving the problem of PAM-based communi-
cations [11]. While a continuous-time chaotic signal was
frequency-modulated in Ref. 11, this study proposes a
method of transmitting a discrete-time chaotic signal using
aconstant-envelope pulse. On the other hand, the spreading
factor L should be decreased in order to suppress the chaotic
synchronization error. However, with small L, communica-
tion becomes vulnerable to interference even in case of
perfect synchronization. Interference immunity is a feature
of broadband chaotic communications, but when chaotic
synchronization is used, there is a trade-off between inter-
ference immunity and synchronization error. In this study,
we place the emphasis on suppression of synchronization
error, thus proposing L = 1. As regards the degradation of
interference immunity, measures against intersymbol inter-
ference will be discussed in Section 4.

3.1 PWM pulse

Here we consider a method of generating binary
pulses P(1,x(k)) {-1, +1} from a chaotic signal x(k) with a
continuous value of (-1, +1). The binary pulses used for’
chaotic communications must meet the following condi-
tions in order to assure good noise resistance and security.

C1) The original continuous chaotic signal can be
extracted at the receiver.

C2) Demodulation is possible by correlation detec-
tion.

C3) The pulse form is continuous for chaotic signal
x(k).

C4) The data cannot be estimated easily from the
received pulse.

The proposed constant-envelope pulse is shown in
Fig. 5. When x(k) 2 0, the proposed pulse is
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Fig. 5. Constant-envelope pulse.
41 -+ 0 <t - kT < |z(k)|Ts,
Ptz(k) =4 -1 - lz(k)ITy St - kTp < Ty, (19
0 .. otherwise
When x(k) <0, it is
-1
o0 0Lt — kT < (1 = |(z(k))Ts,
P(t,z(k)) = +1 (20)
cor 1= |z(k))T £t — kT < T,
0 -.- otherwise

This pulse is composed of two rectangular pulses +1, -1,
and the pulse width is varied according to |x(k) |, while the
time direction is inverted depending on the sign of x(k).
With this pulse, not only the pulse width but also the time
direction is inverted by using the randomness of chaos.
Hence, all of conditions C1 to C4 are satisfied.

3.2 Configuration of conmunications system

In PWM-based chaotic communications, binary in-
formationdatab(i) € {-1,+1},i=0, 1,2, ... are transmitted
using one chaotic sample. A block diagram of the proposed
system is shown in Fig. 6.

At the transmitter, chaos is generated by the follow-
ing discrete-time one-dimensional chaotic system:

z(k + 1) = az(k) + f(y(k))
y(k) = b(k)(2l=(k)| - 1)

The difference of y(k) in Eq. (22) from the PAM-based
system (2) will be explained later.

A PWM pulse train is generated by the chaotic signal
x(k), and the transmitted signal is produced by multiplying
it by the information data b(k):

20
(22)

u(t) = i b(k) Powm(t — kTy,z(k))  (23)

k=0

Here Ppwm(t,x(k)) is the PWM pulse (19), (20) proposed in
Section 3.1. Since the pulse width variation of Ppwpm(2, x(k))
is finite at (0, T3), a correction is applied so that 1 is obtained
at x(k) > 1, and -1 is obtained at x(k) <-1.

At the receiver, the input to the discrete-time chaotic
system is obtained by integration of the received signal r(?)
= u(t) + n(r):

1 (k+1)T,

i) =g [ i (24)

In the absence of noise, the above integrator output be-
comes

i(k) = b(k)(2lz (k)| — 1) (25)
which is equivalent to Eq. (22). That is, y(k) was selected
as in Eq. (22) to obtain equal inputs to the chaotic system
at the transmitter and receiver.

The chaotic systems at the transmitter and receiver
are identical, and the chaos estimate is produced as follows:

2(k +1) = ad(k) + F((k)) (26)
In the absence of noise, the synchronization error is
e(k) = (k) — z(k) = ae(k — 1) 27

and synchronization takes place as in the case of PAM.
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Fig. 6. Communication system based on chaotic synchronization using PWM.
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Then, a replica of the PWM pulse train is generated using
the chaos estimate x(k)

() = Z Perwm(t — kT}, 2(k))

k=0

(28)
The correlator output V(i) for the information data b(k) is

1 O N
V(i) = T _[ . r(t)i(t)de 29)

The information data estimate is obtained as 3(:')
sgn(V(:)) When the chaotic synchronization is perfect, that
is, when x(k) x(k), Eq. (29) can be rewritten as follows:

V(@) = T: {Ts- Prwm(t —vab, z(k))*}
=1

1 [H+DT
+ 1 / n(t)(t)dt
Ty Jim,

1 (G4+1)Ty
—b() + & / n(t)a(t)dt
Tb iTy

(30)

The first term above expresses the signal component. Un-
like PAM-based systems, there is no scatter for every bit.

3.3 Bit error rate characteristic

The bit error rate performance of the proposed system
is shown in Fig. 7.

The chaotic synchronization parameter is set to @ =
0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. In the proposed system, the
nonlinear mapping shown in Eq. (25) is used, and hence

z(k + 1) = az(k) + f(b(k)(2lz(k)| -~ 1)) (31)

Here flx) = x is assumed, so that the second term on the
right-hand side of Eq. (31) is the same as in PAM. In
addition, for @ =0, the chaotic signal x(k) on the transmitter
side is the same for PAM and PWM. For comparison, we
also show the bit error rate for PAM-based chaotic commu-
nications (L = 64), and for OOK (On-Off Keying) envelope
detection. As is evident from Fig. 7, the bit error rate is best
ata =0. In the proposed system, a bit error rate below 103
is reached at E/N, above 14 dB, which suggests an im-
provement of about 8 dB compared to PAM. This difference
is explained by the fact that the variance of the signal
component in the correlator output becomes zero due to the
use of a constant-envelope pulse, and the synchronization
error is reduced by setting the spreading factor to L = 1.
Compared to perfect synchronization, Ey/N, becomes about
7 dB worse in order to reach a bit error rate below 1073, In
the proposed system, the correlator output is identical to
that of BPSK if the chaotic synchronization is perfect,
regardless of the noise. Therefore, the reason for the poor
bit error rate is synchronization error.

107t |

1072

bit error rate

1073

107

15 20 25 30

0 5 10
Ey/ No [dB]

Fig. 7. Bit error rate of proposed system.

3.4 Security considerations

Various deceding methods have been developed for
chaotic masking [18, 19], but there are few if any studies
for CSK. In CSK, decoding is possible if statistical values

* such as the mean and variance of the transmitted signal and
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the return maps and attractors differ depending on the
information data [20].

In conventional PAM-based chaotic communications
without noise, the transmitted signal is an imregular signal
at first sight. However, two kinds of return maps with
different phase corresponding to the information data {+1,
—1) can be obtained by sampling of the transmitted signal
at appropriate time intervals. Thus, in conventional chaotic
communications, the information data may be estimated
even in the absence of knowledge of the chaotic synchroni-
zation system by observing the time series at 1-bit duration
and checking the return maps. However, the spreading
factor L must be set to 2 or higher (the higher the better) in
order to obtain different return maps.

In the proposed method, the number of chaotic signal
samples allocated to 1 bit is L = 1. Hence, it is difficult to
extract a sufficient number of samples from the transmitted
signal in order to estimate statistically significant per-bit
values. Thus, it is extremely difficult to obtain two different
return maps corresponding to the information data. Simi-
larly, L = 1 proves effective with respect to decoding meth-
ods using statistical values of the chaotic signal. In addition,
if chaotic maps of even functions are employed, the distri-
bution of the chaotic signal is symmetric, and the statistical
values of the transmitted signal can be fixed regardless of
the information data. Therefore, the proposed method can
be called confidential in the sense that conventional decod-
ing techniques would not work.




The chaotic signal is a random broadband signal,
which offers the possibility of secure communications.
However, chaotic communications is not necessarily better
in every aspect than conventional cryptographic technolo-
gies. Still, chaotic signals are very attractive in that they can
be generated by using very simple hardware, and their real
advantages can be demonstrated when used in combination
with state-of-the-art technologies.

4. Suppression of Intersymbol Interference by Using
Blind Adaptive Equalizer

Above we examined communication channels free of
interference. In this section, we consider an AR communi-
cations channel as a channel with intersymbol interference.

The proposed communications based on chaotic synchro-

nization is rather vulnerable to interference, even in case of
perfect chaotic synchronization, because L = 1. In addition,
chaotic communications becomes very difficult in the pres-
ence of interference. Therefore, we consider the suppres-
sion of intersymbol interference by applying an adaptive
equalizer prior to chaotic synchronization.

In adaptive algorithms that require training signals,
the transfer efficiency drops because of the sending of
training signals. In addition, chaotic communications as-
sumes that the chaotic signal used at the transmitter side is
not known at the receiver side. Therefore, blind adaptive
algorithms that do not require training signals are preferable
for chaotic communications.

CMA [14] is known as a typical blind adaptive algo-
rithm that can be applied to constant-envelope signals. The
problem with this algorithm is that convergence of the
weight coefficients to the optimal solution is not guaranteed
(15]. Applying CMA to constrained equalizers [16] was
proposed as a solution to the problem. However, this solu-
tion does not work well when the direct wave gain of the
AR communications channel is small. In addition, using
differential CMA instead of CMA was also examined [17],
but in this case, optimality is guaranteed only for a first-or-
der AR channel. In this study, we propose a new algorithm
that guarantees optimality regardless of the direct wave
magnitude in an Nth-order AR channel.

4.1 Communications channel model and
equalizer

When noise can be ignored, the received signal sam-
pled at time intervals of T can be expressed as follows:
N
e = Gug + ) _ @itk (32)

i=1

Here G € R is the direct wave gain and g; € R is the AR
channel parameter. In addition, r;, u, are, respectively, the
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k-th received signal and the transmitted signal sampled at
T.. In this study, we consider an FIR equalizer constrained
at a first tap weight of 1 [13, 17). The output y; of this
nonlinear constrained equalizer is

N
Y =Tk + Z'w.-rk_,-
i=1
= Gux + I} (33)
Here -
N
I = Z(w; + a,-)rk_,- 34

i=1

is the intersymbol interference, and ®; € R is the equalizer’s
tap weight. The first tap input ry includes intersymbol
interference with the received signal 1, but the intersymbol
interference included in the first tap input is eliminated by
adjustment of the second and subsequent tap weights.

4.2 Blind adaptive equalization algorithm

The following evaluation function is proposed in this
study:

7=3E [ - B )] (35)
Since the transmitted signal is a constant-envelope signal
in PWM-based communications, Eq. (35) is obviously
zero. If channel noise can be ignored, weight convergence
to the optimal solution is assured by minimization of evalu-
ation function (35) by the gradient method (see Appendix
1). Performance evaluation in the presence of noise is
considered in the following section.

A stachastic gradient algorithm is obtained by partial
differentiation of Eq. (35) with respect to 6, and replacing
the expectation with the instantaneous value:

wik +1) = wi(k)
—p (yﬁrk_.- - ﬁykr k-i) (36)

Here p is the step size and E is the mean square of the
output; at a stationary point, y2 = G2 Finally, the equalizer’s
output y; is corrected as follows to obtain the original
discrete-time chaotic signal:

’ Ye

=" (37

=

4.3 Computer simulation

In order to verify the effectiveness of the adaptive
equalizer using the proposed algorithm, a computer simu-
lation was performed for a second-order AR channel at G
=1,a,=0.3, a,=0.2. The interference-to-signal power ratio
(ISR) is shown in Fig. 8. Here E/Ny = 30 dB is assumed.
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Fig. 8. ISR characteristic,

The ISR was calculated by the equation

> g% — maxg?
ISR = =0 > (38)
max g;

and the ensemble average for 1000 samples was found.
Here g; = ¥k, is the system impulse response includ-
ing the communication channel and equalizer, and {k,) is
the impulse response of the communication channel. As is
evident from the diagram, the proposed algorithm effi-
ciently suppresses interference. In addition, the bit error
rate is given in Fig. 9. As indicated by the diagram, the bit
error rate performance is considerably worse than in the
case of a white-noise channel without interference (Fig. 7).
However, when the equalizer is applied, a bit error rate
below 1073 is obtained at E,/N, of about 15 dB, which
indicates satisfactory effectiveness.

10° . . " :
with Equalizer ——
without Equalizer ---¢---

bit error rate
—
o
N

0 5 10 15 20
Ey/ No [dB]

Fig.9. Bit error rate characteristic.
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5. Conclusions

In this paper, we have proposed PWM-based con--
stant-envelope transformation of a transmitted signal in
order to improve the performance of communications based
on chaotic synchronization. In the proposed method, the
variance of the correlator output is kept small, as is the
synchronization error, thus yielding a good bit error rate
compared to conventional PAM-based communications. In
addition, we proposed a blind adaptive equalization algo-
rithm to reduce intersymbol interference, and demonstrated
its effectiveness for communication based on chaotic syn-
chronization.

Security analysis and further improvement of the bit
error rate are topics for future research. In addition, we plan
to investigate the influence of chaos maps and synchroni-
zation errors, and to compare the proposed methed to
DCSK and other communication techniques not using cha-
otic synchronization.
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APPENDIX

1. Stationary Point of Equalization Algorithm

Evaluation function (35) can be rewritten as
1
J = 7B [0 - BWd)’]
1 2
=3 (E [vé] - B [43]°) (A1)

Considering the randomness of chaos, let us assume Efu;]
= Eluz]. In addition, uf = 1, because of the use of constant-

envelope PWM pulses. Partial differentiation of Eq. (A.1)
with respect to ©; gives

8J
o = & Wire—s] - E [ui] B lyere-]

=5 [(G"u,;c + Ik)srk..,-] '
-F [(Guk + Ik)z] E[(Gug + I)re—i]
 =(2G? - E1}]) Ellire-i]
G EBr) (A2)
Here E[l,r,;] = Elf3r,;] if I, = O; therefore, 0J/0w; =0, Vi,
indicating a stationary point.

In addition, by multiplying both sides of Eq. (A.2) by
(®; + a;), and summing from i = | to N, we obtain

N
oJ
Z(w; + a.-)-c,m

i=1

N
=E [yi D (wi+a) Tk—i]

t=1

N
-E[R] E {yk E (wi + ;) 'rk_,]

=E[yils] - E [ylzc-]-E (veIx]
=2G°B ] + E[(Z - E[1))’] 20 (a3

For a stationary point 8J/dw; = 0, Vi, the above becomes
zero. On the other hand, /; = 0 is required for the above to
become zero. Therefore, y, = Gu,,l; at a stationary point;
and J takes its minimum value of 0.

Denoting the correlation matrix of equalizer’s tap
input by R = [E[rn.j]), W = [© + a, - - - @y + ay]”, the
following can be derived:

if w= [w1 +a1---wN+aN]T
E[I}) =w"Rw (A4)

Since R is positive definite, w =0 is required for E[lﬂ =0.
Therefore, a; =—a;, Vi at a stationary point. In addition, at
such a point,
8%J
311),'31!)_7'

=2G’E[r-irk—i], Ie =0  (AS5)

Since the Hesse matrix H = 2GR is positive definite, this
stationary point is stable.

As follows from the above, /; can be eliminated by
minimizing J.
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