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SUMMARY

This paper proposes a fast learning algorithm of
neural networks and evaluates the performances of adap-
tive equalizers using neural networks trained by the
proposed algorithm in a frequency-selective fading chan-
nel. The backpropagation (BP) algorithm which is used
widely to train neural networks has a slow convergence
rate because it is based on the gradient descent method.

This paper presents a fast learning algorithm using
the recursive least squares (RLS) algorithm which has a
fast convergence rate as an adaptive algorithm for adap-
tive linear filters. In the proposed algorithm, the sum of
the squared error between the actual total input and the
desired total input is used as the cost function to apply
the RLS algorithm. A simulation result on the exclusive-
OR problem indicates that the proposed algorithm is
about 8.8 times faster than the BP for the number of
iterations required to converge.

Recently, there has been interest in adaptive equal-
izers as an application field of neural networks. Howev-
er, the performance of an adaptive equalizer using a
neural network in a frequency-selective fading channel
which is observed in land mobile communications has
never been evaluated. Therefore, in this paper, the per-
formances of adaptive equalizers using neural networks
trained by the proposed algorithm in a frequency-selec-
tive fading channel are evaluated. Especially, an adaptive
equalizer using the selectively unsupervised learning
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neural network proposed by the authors is considered.
The adaptive equalizer can reject the false learning by
carrying out learning selectively. It is shown that the
adaptive equalizer is superior to the conventional one and
the one using the conventional neural network.

Key words: Neural network; learing algorithm;
objective function; adaptive equalizer; frequency selective
fading channel.

1. Introduction

Neural networks which consist of a large number
of nonlinear processing units acquire capabilities of high
information processing by learning. Many good results
have been obtained in many fields such as pattern classi-
fication [1]. The backpropagation (BP) algorithm [2] is
used widely as a learning algorithm. However, the BP
has a drawback in its slow convergence rate because it is
based on the gradient descent method.

Many learing algorithms have been proposed to
improve the convergence rate. These include: a dynami-
cal learning rate adaptation [3]; the use of nonlinear
optimization methods; a modification of the cost function
{5]); an initialization method of the conneclion weights
[6]; and reduction of neurons in the hidden layer [7).
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Recently, learning algorithms using the recursive
least squares (RLS) algorithm which has fast convergence
rate as an adaptive algorithm for adaptive linear filters
have been proposed independently and it has been report-
ed that they have a fast convergence rate [8-10). To
apply the RLS algorithm, a piecewise-linear function
instead of a sigmoid function is employed for the non-
linear output function in [8) or the desired total input
is estimated and the sum of the squared error of the total
input of each neuron is then minimized in [9] and [10].

In this paper, we propose a novel learning algo-
rithm of neural networks using the RLS algorithm. In the
proposed algorithm, the weighted sum of the squared
error between the actual total input and the desired total
input (it can be obtained by using the inverse function of
the output function) is used to apply the RLS algorithm.
It is shown that the proposed algorithm can considerably
reduce the number of iterations required to converge for
the exclusive-OR problem.

Next, an adaptive equalization is considered as an
application which needs a small number of iterations to
converge. It was reported that, if an adaptive channel
equalization problem in digital communications is regard-

ed as a pattern classification problem, the adaptive equal-

ization of the channel with the intersymbol interference
is not a linear separable problem [11]. The adaptive
equalizer using a neural network is superior to the con-
ventional adaptive equalizer employing a linear trans-
versal filter because the neural network can separate
patterns which are not linearly separable [11].

In land mobile communications where adaptive
equalizers have been developed, compensation for varia-
tions of a channel is studied [12]. Thus, the performance
of the adaptive equalizer using a neural network must be
evaluated in a time-varying channel.

So far, some reports have been made concerning
the performance evaluations of the adaptive equalizers
using neural networks in time-varying channels [13, 14].
However, the channel characteristics considered in these
reports are not realistic and the frequency-selective fad-
ing channel observed in land mobile communications has
never been considered.

In this paper, a neural network trained by the
leaming algorithm proposed in the first half of this paper
is applied to an adaptive decision feedback equalizer
(DFE) and its performance in a frequency-selective
fading channel is evaluated.
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On the other hand, we have already proposed the
selectively unsupervised leaming neural network
(SULNN) [15]. After the learning by the known learning
data, the SULNN can track changes of data in a nonsta-
tionary environment by creating the teacher signals based
on the outputs of the network and carrying out learning.
Although false teacher signals are created when the
decisions are incorrect due to noise, and so on, the
SULNN can reject the false leaming by carrying out
leaming selectively. Therefore, the SULNN is suitable
for a pattern classification in a nonstationary environment
with noise. In practice, the detection system using the
SULNN is superior to the conventional detection system
in an electrical power line spread spectrum communica-
tion in the case of appliances changing [16].

In this paper, the DFE using the SULNN is espe-
cially considered and its effectiveness is shown.

2. Proposal of Fast Learning Algorithm
2.1. Neural networks

Consider a neural network which consists of L
layers. The total input y,"’(:) and output x,-"’(t) of the i-th
neuron in the I-th layer at time ¢ are given as follows:

v = Pt = Daf () M

zit)=f(y"(1)) (2

where N, _, is the number of neurons in the { - Ist
layer, w,j‘”(r) is a connection weight from the j-th neuron
in the / - st layer to the i-th neuron in the I-th layer at
time ¢ and £( ) is the nonlinear output function. The
constant for the threshold is always 1 and is expressed as
xo"’(t). The output of a neuron in the input layer (I = 1)
is the input of the neuron.

2.2, Derivation of learning algorithm
The cost function is defined as the following equa-

tion and it is minimized:

E(t)=%n2:o/1f-n:2'e'(l.)(”' t)! (3)

where

ef'(n, t)=dal*(n)~ y$¥(n, 1) @



Fig. 1. Neuron model.

The forgetting factor is expressed as A (0 < A < 1) and
is used to track variations of data in a nonstationary
environment. The actual total input and the error at the
total input of the i-th neuron in the output layer of the
network with connection weights at time ¢ in case of the
input signal at time n are expressed as y,.‘l"(n, f) and
eL(n, 1), respectively. The desired total input of the i-th
neuron in the output layer at time n is expressed as
d,‘L’(n), and it can be obtained by using the inverse func-
tion of the output function. Taking the partial derivative
of Eq. (3) with respect to w,.j‘”(l) and setting it equal to
zero

’:Eﬂ)/l""e.‘"(n, zf="(n, 1)=0 )

where xj" “n, 1) is the output of the j-th neuron in the
I - Ist layer of the network with connection weights at
time 7 for the input signal at time n. The error signal
e,."’(n, 1) is given by Eq. (4) for the output layer and is
given by the following equation for the /-th hidden layer:

e, )=yt n, :)):fs':_:,‘: wit (el (0, t) )

As shown in Fig. 1, ¢n, 1) in a hidden layer is
regarded as the error between the desired and actual total
input similarly to that in the output layer:

e, ) =din) = Hul(xt "m0

Substituting Eq. (7) in Eq. (5) yields a normal equation
[17). A recursive learning algorithm can be obtained

from the normal equation by using the RLS algorithm
[17].

The resulting learning algorithm is summarized as
follows.
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Step 1. Initialize.

The connection weights w,-j‘"(O) are initialized to
small random values. The (N, + 1) x N_, +1)
correlation matrices P Y0) are initialized to identity
matrices.

Step 2. Calculate output signals.

Calculate the total input y,-"’(t) and output x,-"’(t)
using Steps (1) and (2).

Step 3. Update the Kalman gain and the correla-
tion matrices.

Update the Kalman gain X“(r) and the correlation
matrices P¥(r) using the following equations:

P>t =1) X4-"()

K“)(l)= A+X”""(!)P”’([—I)X“'"(l) (8)

P(l)(l)=_i_(1)(ll(l - 1)_ K(l)([)X(l-\)f(t)P(ll(t —_ l))
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where X ¢ - ") is a vector whose component is the
output of the neuron in the ! - Ist layer x,-" I ON (N
[0, N, _,)), and the superscript T denotes transposition.

Step 4. Calculate error signals.
For the output layer, calculate the error signal by
el (1) =di (1)~ i 2) (10)

where

di ()= /""(t()) (11

where 1,(f) is the desired output of the i-th neuron in the

output layer. For the ¥/ € (2, L - 1])-th hidden layer,
calculate the error signal by

ANO= LGN F ot e =gy

Step 5. Update the connection weights.

Update the connection weight vectors from I - 1st
layer to the i-th neuron in the /-th layer by

W)= Wit —1)+ K9 et(1) (13)
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Fig. 2. Learning curves of XOR.

Repeat Step 2 to Step 5 until the error converges to
within an acceptable range.

3. Behavior of Fast Learning
Algorithm

Now the performance of the learning algorithm
proposed in section 2 is evaluated via computer simula-
tions. The performance of the proposed algorithm is
compared with that of the BP. The exclusive-OR prob-
lem [2] was considered. The network has two neurons in
the input layer, two neurons in the hidden layer, and a
single neuron in the output.layer. The weights were
initialized to random values distributed uniformly be-
tween -0.5 and 0.5. The initial weight values of the
proposed algorithm and BP were the same. A thousand
trials with different initial values were carried out. The
four learning patterns were represented in the same
order.

The forgetting factor of the proposed algorithm was
tested every 0.05 from 0.5 to 0.95 and the learning rate
and inertia rate of the BP were tested every 0.2 from 0.2
to 1.0. The parameters whose convergence probability
was more than 80 percent and which provided the fastest
convergence were employed. As a result, the forgetting
factor, learning rate, and momentum rate were set to be
0.8, 1.0, and 0.8, respectively. The sigmoid function
which is used widely for the exclusive-OR problem was
used as the output function:

1
/@)=t (14)
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Table 1. XOR simulation results

Proposed BP
algorithm
Number of average learn-
ing cycle 234 2057
Convergence rate [%] 98.9 81.0
CPU time per cycle (ms) 0.202 0.125

The inverse function of Eq. (14) is given by

-1 _ X
S (x)=In g 1s)

Since, if the desired output signal is set tobe 0 or |, Eq.
(15) becomes infinity, the desired output signal was thus
set to be 0.01 or 0.99.

An example of the leaing curve is shown in Fig.
2. From this figure, one can observe that the mean-
squared error of the proposed algorithm becomes small
in fewer iterations in comparison with that of the BP.

Next, the number of iterations and CPU time re-
quired to converge are considered. The learning was
terminated when the squared error fell below 0.001 four
successive iterations. If the learning did not converge
after 10,000 iterations, it was terminated.

The results are shown in Table 1. The proposed
algorithm is about 8.8 times faster than the BP for the
number of iterations required to converge. The CPU time
required for an iteration of the proposed algorithm is
about 1.6 times as much as that of the BP. Hence, the
proposed algorithm is about 5.5 times faster than the BP
for the CPU time required to converge.

It is noted that a convergence of the proposed
algorithm depends on the initial weight values as the BP
and thus it is not guaranteed to converge to the global
minimum of the cost function and there is a possibility to
converge to a local minimum,

It is clear from Eqgs. (8) to (13) that the proposed
algorithm joins the error propagation of the BP with the
RLS algorithm. Thus, if the number of inputs to a neu-
ron is N, the computational complexity of the BP is
proportional to N while that of the proposed algorithm is
proportional to N'? since the computational complexity



which is required for the RLS algorithm [17] and is
proportional to N? is dominant,

Therefore, if N is very large, the CPU time re-
quired to converge for the proposed algorithm will be
very long. However, the small number of iterations is
essentially needed in a system, such as an adaptive equal-
izer, where the learning data are presented at stated
periods and it is necessary to track changes of the envi-
ronment for a short time. In particular, the proposed
algorithm will be useful in such a system. Thus, in sec-
tion 4, an application of a neural network trained by the
proposed algorithm to an adaptive equalizer is discussed.

4. Application to Adaptive Equalizer
4.1. Adaptive decision feedback equalizers

Recently, an adaptive decision feedback equalizer
(DFE) which is a nonlinear equalizer is considered as a
countermeasure of frequency-selective fading in land
mobile communications [12]). The DFE consists of the
fractionally tap-spaced (two taps/symbol) feedforward
filter and the feedback filter whose inputs are previous
decisions. Its tap coefficients are adjusted to minimize
the mean-squared error between the equalizer output and
the teacher (reference) signal by using the RLS algo-
rithm, and so on. It is known that the DFE is simple and
effective.

It is reported that a nonlinear decision boundary is
needed to achieve the optimum classification of input
patterns to a DFE when the feedback signals to the DFE
are correct [18]. However, the conventional DFE creates
only a linear decision boundary because the DFE uses a
linear transversal filter for the feedforward filter. On the
other hand, neural networks can create any nonlinear
decision boundaries. It is known that the DFE using a
neural network is superior to the conventional DFE in
static frequency-selective channels [18, 19]. In this sec-
tion, the performance of the DFE using a neural network
trained by the algorithm proposed in section 2 in a fre-
quency-selective fading channel is evaluated. In particu-
lar, the DFE using the SULNN [15] which is suitable for
dynamical pattern classifications is considered.

4.2. DFE using SULNN
The structure of the DFE using the SULNN is

shown in Fig. 3. Since the processing signals are com-
plex-valued signals, there are neurons corresponding to
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Fig. 3. Structure of the DFE using SULNN.

real and imaginary components in the input and output
layer. The differences between the conventional neural
network and the SULNN are the confidence neurons and
the judgment system. These operations are described as
follows.

Usually, a DFE operates in two modes, i.e., the
learning mode and the tracking mode. In the learning
mode, learning is carried out for the known learning
data. In the tracking mode, for the unknown information
data, the evaluation and the leaming are carried out
simultaneously to track variations of a channel by using
the decision results as the teacher signals. This is re-
ferred to as the decision direction mode in which, if a
decision is incorrect due to noise, etc., false leaming is
carried out by a false teacher signal and the performance
will degrade.

The DFE using the SULNN rejects the false learn-
ing by selective leaming in the tracking mode. A confi-
dence neuron corresponds 1o a neuron in the output layer
and its output is the absolute value of the output of the
corresponding neuron in the output layer:

ci=lzi" i=0,1 (16)
where ¢; is the output of a confidence neuron and is
referred to as the confidence. The real and imaginary
components of the output signal are represented by the
subscripts i = 0 and i = 1, respectively. The judgment
system determines whether leaming is carried out based
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on the confidence values for the present input data. If the
learning is carried out, the decision results are used as
the teacher signals as in the decision direction mode. The
judgment criterion depends on the modulation scheme
employed. The judgment criterion for BPSK is described
as follows:

{lo=&). Lh=0 (Co> Ts)

learning is not carried out (¢ < 73) 17
where ¢, is the confidence for the real component of the
equalizer output and T, is a predetermined threshold and
is referred to as the self-judgment threshold. The deci-
sion z; is given by

3 {l >0
“Tlor awso (18)
The false learning is rejected by setting the self-judgment
threshold appropriately.

Since BPSK is considered as the modulation
scheme in this paper, the transmitted symbol takes a
value {-1, 1}. Therefore, the sigmoid function which
takes value (-1, 1) as the output function is employed:

l—e™*
f@)=13e= (19)

The inverse function of Eq. (19) is given by
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Table 2. Components of simulation

Length of learning data series 50 bit
Length of actual data series 500 bit
Modulation method BPSK
synchro-
Demodulation method nous
detection
Roll-off rate 1.0
FF 4
Number of taps EB 1
FF 112
Tap space BT
Number of neurons in input level 10
Number of neurons in hidden level 8
Number of neurons in output level 2
Forgetting factor (RLS) 0.98
Forgetting factor (proposed method) 0.99
BP learning rate 0.4
BP inertia rate 0.2
ST 1/12800
..J-_- Delay time of dﬂgyed wave T
FF: Feedforward
FB: Feedback
Sx)=In i—}:— 20)

Since the DFE considered uses the learning algorithm

proposed in section 2, the teacher signal 4, is +0.99
instead of +1.

Since the sigmoid function (19) which takes value
(-1, 1) is used as the output function, the confidence
takes value (0, 1). Thus, when the self-judgment thresh-
old is set to be 0, the learning is carried out for all the
data and the DFE using the SULNN is equal to the DFE
using the conventional neural network.
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4.3. Simulation model

An equivalent lowpass system is used in the simula-
tion. The simulation model is shown in Fig. 4. Table 2
shows the simulation specification. The channel charac-
teristic is a two-ray model which consists of the direct
wave and the delayed one. Each wave has the same
average power and is independently Rayleigh faded. The
delay time of the delayed wave is set to be one symbol
duration 7. It is assumed that the estimation of carrier
phase is obtained. The demodulated equivalent baseband
signal at ¢ is expressed as [20]
u(t)=v(Dglt)+v(t - T)g()+n(s)  21)
where W) is the value of the transmitted complex base-
band signal, n(7) is the additive white Gaussian noise
expressed as an equivalent lowpass system and g(1) is
zero mean complex-valued Gaussian process and is band-
limited to the maximum Doppler frequency fp.

The maximum Doppler frequency is expressed as
fp- The envelope of g() is Rayleigh-distributed, and its
phase is distributed uniformly.
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In this paper, the condition where f,T = 1/12,800
is considered. For example, this condition corresponds to
Sfp = 80 Hz when the transition rate is 1024 kbit/s and
Jp = 80 Hz corresponds to a vehicle speed of 96 km/h
when the carrier frequency is 900 MHz. The connection
weights w,® and the correlation matrices P® are initial-
ized in each burst to improve tracking ability.

As mentioned in section 3, there is a possibility to
converge to a local minimum for the proposed algorithm.
However, the performance degradation due to the con-
vergence to a local minimum can be limited within a
burst because the connection weights w,-j“’ are initialized
in each burst.

4.4. Performance evaluation

First, the usefulness of a neural network and the
convergence rate of the proposed algorithm are consid-
ered. Figure 5 depicts the learning curves where E, /N,
= 20 dB. The energy of the received signal including the
delayed wave per bit is expressed as E,, and N, describes
the power spectral density of noise. It is assumed that the
teacher signals are known and the feedback signals are
correct. The conventional DFE is an equalizer whose tap
coefficients are complex-valued and the RLS algorithm
is employed for learning. The mean-squared error of the
BP (b) and that of a neural network trained by the pro-
posed algorithm are smaller than that of the conventional
DFE (a). This is due to the nonlinearity of neural net-
works. Moreover, one can see that the proposed algo-
rithm is faster than the BP and thus is suitable for a time-
variant environment such as fading channels.
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Next, the DFE using the SULNN trained by the
proposed algorithm is considered. As mentioned in sec-
tion 4.2, the performances of the DFE depend on the
self-judgment threshold. Here, we consider how the
performances depend on the self-judgment threshold. The
false learning rate and the learning rejection rate as a
function of the self-judgment threshold are shown in Fig.
6, where E,/N, = 10 dB. It is clear from this figure that
the false leaming rate decreases and the leaming rejec-
tion rate increases as the self-judgment threshold be-
comes higher. If the self-judgment threshold is too low,
the false learning rate becomes high and, as a result, the
equalization performance degrades. On the other hand,
if the self-judgment threshold is too high, the learning
rejection rate becomes high and, as a result, it is difficult
to track variations of the channel. Hence, the self-judg-
ment threshold must be set appropriately between 0 and
1.

Figure 7 shows the bit error rate as a function of
the self-judgment threshold. One can observe that the bit
error rate of the DFE using the SULNN trained by the
proposed algorithm is smaller than that of the DFE using
the conventional neural network trained by the proposed
algorithm (corresponding to T, = 0) by setting the self-
Jjudgment threshold appropriately. The optimum value of
the threshold is 0.6 in this figure. Although the optimum
value depends on conditions such as E,/N,, sufficient
results were obtained by the threshold of about 0.6. In
the following simulation, the self-judgment threshold is
set to be 0.6.

The bit error rate characteristics are shown in Fig.
8. Due to the fact that the DFE trained by the BP is not
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able to track variations of the channel because the BP has
a slow convergence rate, the DFE provides the worst
result. Due to the fact that the DFE using the convention-
al neural network trained by the proposed algorithm can
track variations of the channel because of the fast conver-
gence rate property of the proposed algorithm and the
nonlinearity of the neural network is useful, the DFE is
superior to the conventional DFE. The DFE using the
SULNN trained by the proposed algorithm provides the
best result because of the rejection of the false leaming
by selective learning in addition to the fast convergence
rate property and the nonlinearity.

From the foregoing results, it was shown that the
DFE using the SULNN trained by the proposed algo-
rithm has the best performance and the DFE using the
conventional neural network trained by the proposed
algorithm has good performance. These techniques are
useful in equalizing a frequency-selective fading channel.

5. Conclusions

In this paper, we propose a fast leaming algorithm
of neural networks using the RLS algorithm and consider
an application to an adaptive decision feedback equalizer
in a frequency-selective fading channel.

In the proposed algorithm, the sum of the squared
error between the actual total input and the desired total
input is employed for the cost function to apply the RLS
algorithm which is useful as an adaptive algorithm for an
adaptive linear filter. A simulation result on the exclu-
sive-OR problem indicated that the proposed algorithm is



about 8.8 times faster than the backpropagation algorithm
for the number of iterations required to converge. The
proposed algorithm will be useful in application fields
where the small number of iterations is needed.

Moreover, the proposed algorithm was applied to

the SULNN we proposed and the DFE using it was
considered. The DFE can reject the false learning due to
selective learning. The performances of various types of
DFE using neural networks in a frequency-selective
fading channel were evaluated. Consequently, it was
shown that the DFE using the SULNN trained by the
proposed algorithm is superior to the conventional DFE,
the DFE using the conventional neural network trained
by the BP and the DFE using the conventional neural
network trained by the proposed algorithm.

Reduction of computational complexity of the
proposed algorithm is a future problem. The performance
evaluations of the DFE in various conditions where the
delay time of the delay wave is longer or the maximum
Doppler frequency is higher should be considered. De-
velopment of the optimization technique of the self-judg-
ment threshold is the subject of current investigations.
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