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SUMMARY

In this paper, a new adaptive equalizer that adjusts the
nonlinear filter without training signals is proposed and its
performance is evaluated. In the proposed equalizer, the
nonlinear filter has constraints, while learning is carried out
by means of the output energy minimization algorithm.
Since the proposed equalizer has nonlinearity, it has a better
bit error rate than the linear equalizer. Further, since no
training signal is needed, it is to be expected that the
transmission efficiency is superior to that in an equalizer
with training signals. In order to evaluate the performance
limitations of the proposed equalizer, an optimum equalizer
with constrained filter input is derived. By means of simu-
lations, a performance evaluation is carried out and the
effectiveness of the proposed equalizer is demonstrated.
Further, in order to improve the performance of the pro-
posed equalizer for a linear communication channel, an
intersymbol interference canceler and an algorithm for
correcting the error are proposed and their effectiveness is
demonstrated. © 2003 Wiley Periodicals, Inc. Electron
Comm Jpn Pt 3, 87(3): 17-29, 2004; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI
10.1002/ecjc.10145
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1. Introduction

When high-speed data transmission is carried out,
intersymbol interference along the propagation channel is
an important problem. Equalizers are used for suppressing
the effect of this intersymbol interference and estimating
accurate transmitted signals. It is known that an equalizer
with a nonlinear structure has better performance than a
linear equalizer in a linear communication channel to which
white Gaussian noise is added [1]. To date, nonlinear adap-
tive equalizers using nonlinear filters such as the layered
neural network [2], Volterra filter [3], and RBF (Radial
Basis Function) network [4] have been investigated. These
nonlinear adaptive equalizers adaptively adjust the weights
in a receiver by means of known training signals. However,
since many training signals are needed before convergence,
the transmission efficiency is found to be low.

In order to resolve this low efficiency by the use of
these training signals in linear adaptive equalizers, blind
equalizers have been studied, in which the linear filter can
be adjusted without training signals. Typical methods in-
clude the CMA (Constant Modulus Algorithm) (5] and the
MOE (Minimum Output Energy) algorithm minimizing the
output energy of the constrained linear filter [6). These
linear blind equalizers have high transmission efficiency
since no training signals are used.

If on the other hand nonlinear equalizers can be
adjusted by a blind process, even better performance may
be expected. To date, research on such nonlinear blind
equalizers has included studies based on learning of the
layered neural network approximated by several FIR filters
by means of CMA [7] and by the RRBF (Recurrent RBF)
[8]. Sufficient discussions have not yet been carried out.

© 2003 Wiley Periodicals, Inc.



In this paper, a new nonlinear blind equalizer is
proposed. In the proposed equalizer, the nonlinear filter is
trained in such a way that the output energy is minimized.
The proposed configuration can be thought of as a replace-
ment of the linear filter in the equalizer in Ref. 6 with a
nonlinear filter. Since the proposed equalizer has nonlinear-
ity, better performance than in a linear equalizer is expected.
Since no training signals are needed, the transmission effi-
ciency is expected to be superior to that in an equalizer
using training signals. When the performance limit of the
equalizer is discussed, an optimum equalizer based on the
known transmission characteristics can serve as a reference.
This is known as a Bayesian equalizer [2]. In this paper, a
constrained optimum equalizer is derived. With reference
to this configuration, the performance of the proposed
equalizer is discussed. In the present paper, a method is also
discussed for eliminating the intersymbol interference and
correcting the decision error in order to improve the per-
formance of the proposed equalizer.

2. Communication Model

2.1. Linear communication channel and
adaptive equalizer

The communication model dealt with in this paper is
shown in Fig. 1. Here, d, denotes the transmitted data and
consists of an independent sequence with +1 and -1 taken
at equal probabilities; w, is white Gaussian noise with a
mean of 0 and a variance of 6 and is assumed independent
of the transmitted signal; r, is the channel output, u,, is the
observed received signal, and y,, is the equalizer output. The
received signal is given by

L
Un = C1dn + Z Cidn—i+1 + Wn (1)

i=2

where ¢; denotes the strength of each arriving wave. The
first term on the right-hand side of Eq. (1) is the direct wave
component and the second term expresses the delayed
components. The equalizer estimates the transmitted signal
d, by means of the received signal vector u, = [«,

Wn
fn l Un
dn channel equalizer Yn
Fig. 1. Communication model.
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). ..., i,y ]7. The adaptive equalizer has adjustable
coefficients in the filter so that the filter coefficients can be
adjusted adaptively in response to the communication chan-
nel.

2.2. Conventional nonlinear adaptive equalizer

The conventional nonlinear adaptive equalizer that
needs training signals has the configuration shown in Fig.
2. Its output is as follows:

Yn = F(un) 2)

where F denotes a nonlinear adaptive filter with adjustable
coefficients.

The data decision value can be obtained as
Y, =sgn(y,). In this equalizer, during the learning period,
the nonlinear filter F is adjusted in such a way that the mean
square error given by the following equation is reduced by
using the known training data d,:

J = E[(yn — dn)?] 3

As an example, if a layered neural network is used as
a nonlinear filter, learning is carried out by the error back-
propagation method [2].

When the transmitted signal is estimated from the
received signal vector, the ensemble of the received signal
vector, as the boundary between the received signal region
with decision of —1 and that with a decision of +1 is called
the decision boundary. As seen in Section 4, the decision
boundary of an optimum equalizer is in general a complex
curved hypersurface. In contrast to the linear equalizer for
which the decision boundary is a hyperplane, the decision
boundary for a nonlinear equalizer can be an arbitrary
curved hypersurface. Hence, the nonlinear adaptive equal-
izer exhibits better performance than the linear adaptive
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Fig. 2. Nonlinear adaptive equalizer.
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Fig. 3. Constrained nonlinear blind equalizer.

equalizer [2]. However, since training signals are used in
the conventional nonlinear adaptive equalizer, transmission
of the information data is not possible during the learning
pericd. Hence, the transmission efficiency is low.

3. Proposal of Constrained Nonlinear
Blind Equalizer

A configuration of the constrained nonlinear blind
equalizer proposed in this paper is shown in Fig. 3. Here,
G denotes a nonlinear adaptive filter with adjustable coef-
ficients. As a nonlinear filter, a layered neural network, an
RBF network, and a Volterra filter can be used. In the
constrained nonlinear blind equalizer, the latest received
signal u, in the received signal vector u, =[u,, u, |, ...,
i,y )7 incident on the filter is retained (this is called the
constraint for the nonlinear filter), while the remaining
received vector v, = [i,_j, 14, 2, . . . U,y +l]Tis input to the
filter. The equalizer output is given by

Yn = tn + G(Vy) 4)

where G is assumed to take only one value for a given v,
The operating principle of this equalizer is as follows. If
d, is the desired component, u,, contains both the desired
component and the interference component, whereas v,
contains only the interference component. Therefore, only
the desired component can be extracted by canceling the
interference component of u, by the interference compo-
nent output from the nonlinear filter. The cost function is
the mean square of the equalizer output given by

J = E[yi) 5)

The coefficients of G are updated in such a way that the
above quantity is reduced. Since the desired component
d, is contained only in u, and has no correlation with the
interference component (delayed component), it is to be

expected that the magnitude of the interference component
can be kept small by minimizing the output energy while
the desired component is maintained. Since the proposed
equalizer has nonlinearity, it is to be expected that its
performance is better than that of a linear equalizer. On the
other hand, because of the constraint, there is a possibility
that a decision boundary of an arbitrary curve may not be
formed. Hence, in Section 4 we derive a constrained opti-
mum equalizer, which is compared with an optimum equal-
izer without constraint, in order to study the performance
limitations of the proposed equalizer.

4. The Optimum Equalizer

4.1. The Bayesian equalizer

An optimum equalizer in a nonconstrained nonlinear
equalizer is given by a Bayesian equalizer. The output of a
Bayesian equalizer is given by the following [2]:

yn = sgn(f¥(un) ~ f~(u,)) (6)

where f*(u,) is the probability density function of u,, for
d,=+1,and f~(u,) is that of u, for d, = —1. The ensemble
of u, satisfying f*(u,) = f~(u,) becomes the optimum
decision boundary.

4.2. The constrained optimum equalizer
The decision boundary is an ensemble of the received
signal vectors such that the output of the equalizer is 0. It

is seen from Eq. (4) that in a constrained equalizer there is
only one u,,

Un = —G(Vn) (7

that satisfies the output y, = 0 for the past received signal
vector v,. Under this condition, the optimum equalizer is
derived as follows:

yn = sgn(un — ag) ®

2o = argmin { / I (unjva)du,

+ / f "(unlvn)dun} ©

Here, the ensemble u, = [u,, V71" satisfying u, = a, (or y, =
0) is the optimum decision boundary. The quantity within



the medium brackets on the right-hand side of Eq. (9) is the
error rate for the decision boundary of @ and hence g, is
chosen in such a way that this is minimized. The first term
in the medium brackets is the error rate for &, = +1 and the
second term is that for d, =—1.

4.3. Decision boundary of an optimum
equalizer

The decision boundaries of the Bayesian equalizer
and the constrained optimum equalizer derived by the
above method are presented in Figs. 4 to 7. The parameters
are given in Table 1. Here, SNR = 7 dB. The following two
are used as a model for the communication channel:

channel 1 u, =d, + 0.5d,-1 + wn
channel 2 un, =d, + 1.5dn-1 + wn

Here, channel 1 is the minimum phase channel and channel
2 is an example of a linear nonminimum phase channel. In
the absence of noise, the received signal vector r =
[r,, r,_;]" is distributed as indicated by *+" and “X” in Figs.
4 through 7 due to intersymbol interference. Here, “+”
denotes the plot of the received signal vector for d, = +1
while “X” denotes that for d, = —1. If noise is present, the
actual received signals are dispersed, depending on the
dispersion of the noise centered around *+” and *“x.” The
problem of equalization can be treated as the problem of
dividing the received signal plane by a boundary line into
the region to be judged as +1 and that to be judged as 1.
When the optimum decision boundaries derived here are
compared, it is to be expected from Figs. 4 and 5 that the
constrained optimum equalizer provides a curve similar to
that for Bayesian equalizer for channel 1 and that both
equalizers have similar performance, Next, from Figs. 6 and
7, there appears a difference in the decision boundary
between Bayesian equalizer and the constrained optimum
equalizer in the case of channel 2. In both cases, the
received signal points can be accurately divided in the
absence of noise. It is considered that the Bayesian equal-
izer is more robust to the noise.

Table 1. Parameters

Communication channel Linear (FIR)

Number of arriving waves 2
L

Number of elements M in 2
the equalizer input u,

Desired signal d

n
Definition of SNR SNR [dB] = 10 log 1 (c}/6?)

5 4 3 2 41 0 1 2 3 4 5
Un

Fig. 4. Bayesian decision boundary for channel 1.

4.4. BER characteristics of the optimum
equalizer

The bit error rate (BER) of the optimum equalizer is
derived by computer simulations. The conditions are iden-
tical to those in Table 1. The communication channels are
channel 1 and channel 2. The BER characteristics for
channel 1 are given in Fig. 8 and those for channel 2 in Fig.
9. In channel 2, for which there is a difference in the
decision boundaries above, the BER characteristics of the
constrained optimum equalizer become degraded. Hence,
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Fig. 5. Decision boundary by constrained optimal
equalizer for channel 1.
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Fig. 8. BER curves by Bayesian equalizer and
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Fig. 9. BER curves by Bayesian equalizer and
constrained optimal equalizer for channel 2.

it is found that there are cases in which the proposed
constrained nonlinear blind equalizer is inferior in terms of
performance limitation to the conventional nonlinear adap-
tive equalizer. Nevertheless, it is confirmed that correct
division of the received signal points by the proposed
scheme is possible in the absence of noise in both minimum
phase and nonminimum phase communication channels.

In general, differential coding must be used in the
blind equalizer because ambiguity between positive and
negative values remains in the output. By using differential
coding, the BER characteristics are somewhat degraded.
This is specifically described in the next section.

5. Performance Evaluation

5.1. Computer simulation

A performance evaluation of a constrained nonlinear
blind equalizer was performed by computer simulation. For
comparison, simulations have also been carried out for the
nonlinear adaptive equalizer using training signals as pro-
posed in Ref. 2 and the linear equalizer for an FIR filter with
two taps. In the following, the nonlinear adaptive equalizer
using the training signals proposed in Ref. 2 is called the
“conventional nonlinear equalizer.” The layered neural net-
work is used as a nonlinear filter. The conventional non-
linear equalizer is trained by the error back-propagation
method. The linear equalizer performs leaming by the LMS
algorithm.

The output of the proposed equalizer is as follows
when a layered neural network is used:

Yn = Un + G(vn)



Ar-=1

1
= Un +quf [Z PimUn—-m +Pi0] (10)
i=1

m=1]

Here, M - 1 is the number of inputs into the layered neural
network and / is the number of neurons in the intermediate
layer. The output f(] of the intermediate layer neurons is a
sigmoid function and is given by

1—-e77

Tres (v

fla) =

wherep,, (n=1,2,...,M - 1) is the weighting coefficient
for the connection between the input layer and the interme-
diate layer, p,, is the threshold value for the intermediate
layer, and g, is the weighting coefficient for the connection
between the intermediate layer and the output layer. The
updating of the weight coefficient is adjusted in such a way
as to minimize the instantaneous approximation of the
mean square of the output in terms of the square of the
outputs at each time by means of the stochastic gradient
method. The specific updating equation is given below. The
sum of the inputs into the i-th intermediate neuron is
expressed as

M-1
ein = Z PimUn—m + Pio (12)

m=1

Further, the output from the i-th intermediate layer neuron
is expressed by

fin = f [ein] (13)
Thus, the updating equations for the weighting coefficient

Pin, for the connection between the input layer and the
intermediate layer and the threshold value p,, are given by

Pim(n+1) = Pimn + Aimn (14)
o 2

Aimn = ~A5 2" + BAim(n-1) (15)
Pimn

- o |
apimn - 2ynqm(1 fm)(l + fan)Un—m
(m=1,2,...,.M-1)
= 2ynQin(1 - ftn)(l + f‘.")

(m =0) (16)

where p,,., is the weight coefficient for connection of the
input layer and the intermediate layer at time n, A, . is the

size of the update for the weight coefficient, A is the step
size parameter determining the magnitude of one update,
and B is the moment parameter. The updating equation for
the weight coefficient ¢; for connection between the inter-
mediate layer and the output layer is

Qi(n+1) = Qin + Ain (17)
8 2
Ain = _Aa(;j'n + BAi(n—l) (18)
dy2
2 =2 ; (19)
a‘h‘n ynfzn

where ¢, is the weight coefficient for connection between
the intermediate layer and the output layer at time », and
4A,, is the size of the update of the weight coefficient. The
specifications of the subsequent simulation are shown in
Table 2. The step size parameter and the moment parameter
are selected in such a way that the convergence speed is
faster among the values minimizing the error rate. The
number of intermediate neurons / is 4 in the layered neural
network.

As mentioned in Section 4, differential coding is
actually needed in the proposed nonlinear blind equalizer.
On the other hand, the conventional nonlinear equalizer
does not need differential coding. In the proposed nonlinear
blind equalizer, performance degradation may occur due to
blinding and to use of differential coding. To clarify these
issues, the results for the proposed nonlinear blind equalizer
are presented with and without differential coding in Sec-
tions 5.3 and 5.4. No differential coding is used in the linear
equalizer presented in Section 5.3.

In Sections 5.3 and 5.4, simulations are also carried
out while varying ¢, randomly for each trial in addition to
the fixed communication channels such as channels 1 and
2. Specifically, the following communication channels are
considered:

channel A un =dn + (0.5 + rand)dn-1 + wn
channel B up, =dn + (1.5 + rand)dn_1 + wn

Table 2. Simulation parameters

Linear (FIR)
Number of arriving waves L 2
Number of elements Min 2

Communication channel

the equalizer input u,
Desired signal d,
Step size A 0.001
Step size B 0.9
Definition of SNR SNR (dB] = 10 log £ (¢{/c”)




where rand is a uniform random value between -0.2 and
+0.2: channel A is a minimum phase channel and channel
B is a nonminimum phase channel.

5.2. Learning convergence

The learning convergence of the proposed equalizer
for channel 1 and channel 2 is shown in Fig. 10. The
horizontal axis indicates the number of iterations and the
vertical axis is the BER. The SNR is 7 dB. Learning is
carried out once each time 1 bit of signal is received. After
100 leaming operations, the weight coefficients are fixed
and the BER is derived for 30,000 bits of received signal.
Simulations are carried out for 100 trials while varying the
initial values of the filter coefficients, transmitted signals,
and noise. The averages of the results are obtained. It is
found that the constrained nonlinear blind equalizer using
the layered neural network can reduce the BER for channel
1 and channel 2 so that learning converges. Hence, learning
by output energy minimization is confirmed to be effective.

5.3. Evaluation of BER characteristics

The BER characteristics are obtained for a linear
equalizer after 1000 learning operations (Linear), the con-
ventional nonlinear equalizer after 40,000 learning opera-
tions (Nonlinear), the constrained nonlinear blind equalizer
after 40,000 learning operations (Nonlinear Blind), and the
constrained nonlinear blind equalizer after 40,000 learning
operations with differential coding (Nonlinear Blind D).
The BER is obtained for 50,000 bits of received signal after
learning. In the simulations, the initial values of the filter
coefficients, transmitted signals, and noise are varied for
100 trials and the averages of the results are taken. The
results are shown in Figs. 11 and 12. The numbers and
letters in brackets in the figures indicate the communication
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Fig. 10. BER of constrained nonlinear blind equalizer.
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Fig. 11. BER comparison for channel 1, channel A.

channels. In Fig. I 1, the BER characteristics are compared
for channel 1 and channel A. The proposed equalizer has
the same performance as the conventional nonlinear equal-
izer. As described in Section 4, both equalizers can form the
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Fig. 12. BER comparison for channel 2, channel B.



same decision boundary for the minimum phase channel.
Also, it is confirmed that the performance degradation due
10 differential coding is slight. Figure 12 presents a com-
parison of the BER characteristics in channel 2 and channel
B. Here, it is found that the BER characteristics of the
constrained nonlinear blind equalizer are worse than those
of the conventional nonlinear equalizer. As described in
Section 4, this is performance degradation due to constraint.
Even here, the performance degradation due to differential
coding is slight. On the other hand, the decision boundary
of the linear equalizer is a hyperplane and hence the BER
characteristics are extremely poor, since the signal points
cannot be divided correctly even without noise.

The results for the case in which a communication
channel is given randomly in all equalizers indicate worse
BER characteristics than those for a fixed channel. When
the channel is given randomly, the receiving signal points
without noise in the receiving signal space are very close if
the intensity ¢, of the delayed wave approaches the one ¢,
of the direct wave. This is considered to occur because the
equalizer inputs are limited to two. It is confirmed by
simulation that the degradation of the BER characteristics
can be reduced somewhat by increasing the number of
equalizer inputs.

Let us compare the BER characteristics for channe!
1 and channel 2 in Figs. 8 and 11, 9 and 12. The charac-
teristics of the nonlinear equalizer after learning do not
reach those of the optimum equalizer, representing the
performance limit. This implies that the weight coefficients
of the layered neural network are not adjusted optimally
even if leaning converges. No improvement is seen when
similar simulations are carried out with an increase in the
number of intermediate layer neurons in the layered neural
network. The causes may be falling into local minima and
variations of the weight coefficients after convergence due
to noise. This depends on the nonlinear filter and the
learning method. This issue merits future study.

Let us describe the behavior of the proposed equalizer
in a communication channel in which the direct wave
component c,d, vanishes, as in the raised cosine channel
[9]. When the direct wave component c¢d, vanishes, the
transmitted signals contained in the latest received signal
u, are d,_,d _»,...,d, ;.. Since d, 5, d, 5 . . .,
d,,_; . are contained in the nonlinear filter input v, it is
to be expected that only 4, will remain if u,, is fixed.
Actually a simulation was carried out to confirm that the
proposed equalizer acts to estimate the transmitted signal
d,,_, one time step past in this communication environment.

In this paper, M = 2 is used so that the discussion in
terms of the formation capability of the decision boundary
in the input signal space can be understood intuitively. If M
is increased in a linear equalizer, the performance is im-
proved somewhat for channel 1, but it is confirmed that no
performance improvement takes place for channel 2. In
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each case, the proposed equalizer is confirmed to have BER
characteristics superior to the linear equalizer for the same
M,

5.4. Evaluation of transmission efficiency

When the channel is time-varying, it is necessary to
perform relearning frequently. Thus, if the training signal
is used, the ratio of the number of training data to the
number of transmitted data becomes increased so that the
number of information data that can be transmitted per unit
time is reduced. No such situation occurs in the blind
equalizer because no learning is carried out. Hence, this
“transmission efficiency,” defined as the number of infor-
mation data that can be transmitted within a unit time, is
evaluated. Let the number of transmitted data be D, the
number of training data contained in the transmitted data
be T, and the number of information data be /. Note that D
= [ in the blind equalizer and D = 7 + T in an adaptive
equalizer that requires training signals. The transmission
efficiency p is defined as

(20)

°
]
o]fy

where /_is the number of information data that are correctly
demodulated from the information data /. Computer simu-
lations are carried out to derive the transmission efficiency,
assuming relearning for every 500 bits in a constrained
nonlinear blind equalizer and a conventional nonlinear
equalizer. The parameters are listed in Table 2.

In order to first derive the optimum number of train-
ing data in the re-learning per 500 bits, the relationship
between the number of training data 7 and the transmission
efficiency p is studied. In the case of SNR = 7 dB, the
optimum number of training data is derived. In the conven-
tional nonlinear equalizer, T bits of training data in the 500
bits of received data are repeated offline for learning. After
learning, the remaining 500-T bits are demodulated. Since
the proposed equalizer does not require a training signal,
all of the 500 bits of received data are used repeatedly for
learning regardless of 7, and 500 bits are used for demodu-
lation. In the simulation, the initial values of the filter
coefficients, transmitted signals, and noise are varied and
averages are taken after 500 trials. The results are shown in
Figs. 13 and 14. It is found that the transmission efficiency
of the conventional nonlinear equalizer does not compete
with that of the proposed equalizer with and without differ-
ential coding for any number of training data. When the
results of the conventional nonlinear equalizer are ob-
served, the transmission efficiency is found to be maximum
at 7= 20 in the minimum phase channel and at 7= 30 in
the nonminimum phase channel. Since it is not known a
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priori whether the channel is a minimum phase shift system
or a nonminimum phase shift system, the number of train-
ing data needed to obtain a good transmission efficiency is
assumed to be 7 = 30. This is considered to be the optimum
number of training data for relearning per 500 bits. Here,
the optimum number of training data is derived for SNR =
7 dB. In the case of SNR =0, 2, 4, 6, 8, and 12 dB, it is
confirmed through simulation that the optimum number of
training data is also 7= 30.
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Next, the relationship between the SNR and the trans-
mission efficiency is studied for the optimum number of
training data 7 = 30 obtained in the above simulation. The
results are shown in Figs. 15 and 16. The results confirm
that there is little difference in transmission efficiency
between the fixed communication channel and the random
one. Also, regardless of whether or not differential coding
is used, the proposed equalizer has atransmission efficiency
better than that of the conventional nonlinear equalizer.
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The following is confirmed by the above perform-
ance evaluation. Since the proposed equalizer can form a
decision boundary identical to the one in the conventional
nonlinear equalizer in the minimum phase channel, it has
the same BER characteristics as the conventional nonlinear
equalizer. On the other hand, the proposed equalizer has
BER characteristics in the nonmipimum phase channel that
are inferior to the conventional nonlinear equalizer due to
the difference in the decision boundary caused by the
constraint. However, in terms of transmission efficiency,
the proposed scheme is superior to the conventional non-
linear equalizer in both the minimum phase and non-
minimum phase channels within the range of the
simulations discussed here.

6. Improvement of Constrained Nonlinear
Blind Equalizer

As described above, there are cases in which suffi-
cient performance cannot be obtained by the proposed
equalizer due to constraint. Let us therefore study the
performance improvement of the proposed equalizer for a
linear communication channel. We propose to construct an
intersymbol interference cancellation system by attaching
a linear adaptive filter as a postprocessing system to a
constrained nonlinear blind equalizer. Further, an algorithm
is proposed that nullifies the error caused by the propaga-
tion of the error from the equalizer to the linear filter, and
its effectiveness is demonstrated.

6.1. Intersymbol interference cancellation
system

The configuration of the system proposed here is
shown in Fig. 17. The portion enclosed by dotted lines on
the lower right is the intersymbol interference canceler. An
estimated value sequence ¥, . ,(i=2,3,...,N) of past

Constrained Nonlinesr Blind Equalizer

Fig. 17. Intersymbol interference cancel system.
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transmitted signals determined by the constrained non-
linear blind equalizer is incident on the linear filter. The
output of the intersymbol interference is

N
ITnp = Un — E hiYn—in

i=2
L N
= Z Ciln-it1 — Z hiYn—iqa
i=2 i=2
+cp dn =+ wy 2n

where #; is the adjustable coefficient of the linear filter.
Then, if I; is set such that h;=c(i< L), 0( > L) when
N2z L and all decisions by the equalizer are correct, the
interference components contained in u, can be eliminated
by using the interference replica generated by the linear
filter.

Since ¢; is unknown in practice, A, is adjusted by an
adaptive algorithm. The mean square of the output of the
intersymbol interference canceler is used as the cost func-
tion:

J = Elz] (22)

The filter coefficient A; is adjusted in such a way that the
above is made smaller. The specific updating equation is

hi(n+1) = hin + CnYn-it1 (23)
where C is the step size parameter used to determine the
step of one iteration. Assuming N2L, let Y =
Yo Yoo oo o Vo) h=(ha, by, oL BN d = [d,_),
dn_z, couy dn-N'H]T and c= [Cz, C3, e vy CL’ 0, cevey O]T.
When the cost function is subjected to partial differentiation
with respect to h, we let dJ/0h = 0. Then, it follows that
hTE[YYT) = TE[dYT) (24)
Assuming that Y = d and using Eldd] =03 =), 1(i=}),
we obtain
h=c (25)
Hence, under the assumption that Y = d, N> L, the filter
coefficient vector minimizing the cost function is equal to
¢, and the impulse response of the communication channel
is derived. However, since the error rate of the equalizer
decision is not 0 in general, Y =d does not necessarily hold.

The filter coefficient h trained by the output energy mini-
mization is somewhat deviated from c.



6.2. Confirmation of operation of the
intersymbol interference cancellation
system

The operation of the intersymbol interference can-
celer was confirmed by computer simulation. The commu-
nication channels used were channel 1 and channel 2. In
addition. SNR = 7 dB, the number of inputs to the canceler
was N = 2 (so that the number of inputs to the linear filter
was 1), and the step size parameter C was 0.001. The
changes of the filter coefficients for 50,000 updates are
shown in Fig. 18. From the results, it is found that h
approaches 0.5 for channel | (c, =0.5) and almost 1.5 for
channel 2 (¢, = 1.5), so that the operation is correct. If an
average of &, after convergence is taken, the resultis 0.4978
for channel 1 and 0.1414 for channel 2. In particular, for
channel 2, the error rate of the decision Y, of the equalizer
is high so that i1, deviates from the target value of 1.5. In
general, the number of arriving waves L is unknown. As
described in Section 6.1, this situation can be dealt with if
N is chosen with a margin. Under the same conditions as
above, the simulation was repeated after N was increased.
Then, hy and higher-order terms converged to 0, indicating
that the operation is correct even if N is increased.

6.3. Error correcting algorithm

When an ervor occurs in the decision Y, of the equal-
izer at time & in the intersymbol interference cancellation
system, a false input is incident on the linear filter after time
k + 1. Hence, error is more likely in the decisions X,
through X, ., in the canceler. This problem is resolved by
using several characteristics of the sequences of ¥, and X, .
Since both ¥, and X, are estimates for d, either ¥, or X, is
in error if the signs of Y, and X, are different. Since an error
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Fig. 18. Learning curves for ISI canceler.

is more likely in X, one time period after an error occurs in
Y,. there is a greater possibility that an error in X, occurs
after an error in Y. On the other hand. X, is not affected by
any error in the decision Y, of the equalizer at the same time.
From these characteristics, by comparing the signs of ¥,
and X, sequentially in time, it is possible to infer that the
difference in sign at the first occurrence is due to an error
in Y,, whereas that from a time one time step later through
N - 1 time steps later is caused by an error in X,. An
algorithm can be derived in which an error in Y, is detected
by comparison of signs using the above reasoning and the
error is corrected. This algorithm is given in Egs. (26), (27),
and (28). In order to use the exclusive-OR, ¥, and X,, taking
values of £1 are replaced with the values of 0 and 1 by using
Y,=,+1D/2and X, =(X, + 1)/2:

In = Xn & }-/n (26)
N-1

€n ="7n (1 - 'Yn—k) 27)
k=1

where @ is the operator indicating the exclusive-OR and ¥,
is the error detection parameter, indicating that there always
exists an error in either Y, or X, if its value is 1. The error
correcting parameter €, detects the error in Y, from ¥,. The
final decision modified by the error correcting parameter is
o,.

Here, only the algorithm used to detect only the error
in Y, from vy, and to correct the decision in Y, is presented.
This process is equivalent to detection of only the error in
X, and comrection of the decision in X,. The same final
decision O,, is obtained. Hence, the error correcting algo-
rithm is one that nullifies the decision error by the intersym-
bol interference canceler caused by input of a false decision
by the equalizer.

6.4. BER characteristics after improvement

Figure 19 shows the entire structure of the improved
system. Both the constrained nonlinear blind equalizer and
the intersymbol interference canceler within the system are
capable of leaming by the output energy minimization
algorithm. Therefore, blind learning is possible, yielding an
improved system. By computer simulation, the decision
Y by the constrained nonlinear blind equalizer, the decision
X, by the intersymbol interference canceler, and the final
decision O, were evaluated in terms of their BER charac-
teristics. Updating of the filter coefficient was carried out
once every time 1 bit was received. In the improved system
after 40,000 updates, the BER was derived for 50,000 bits
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Fig. 19. Structure of improved system.

of received signal. The communication channels used were
chamnel | and channel 2. The specifications are given in
Table 2. The number of inputs to the intersymbol interfer-
ence was N = 2, The step size parameter C was 0.001.
Simulation was performed 5000 times while varying the
initial values of the filter coefficients, transmitted signals,
and noise and then the average was taken. In Figs. 20 and
21, the BER characteristics are shown for the decision Y,
of the constrained nonlinear blind equalizer, the decision
X, of the canceler, and the final decision O,. In Figs. 20 and
21, the decision X of the intersymbol interference canceler
is somewhat superior to the decision Y, of the equalizer.
However, due to error propagation from the equalizer, no
improvement of the BER characteristics is seen. On the
other hand, significant improvement of the BER charac-
teristics is seen in the final decision O, in which the effect
of the error propagation is nullified by error correction. The
characteristics obtained in the final decision are better than
the BER characteristics of the constrained optimum equal-
izer and also are better than the BER characteristics of the
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Fig. 20. BER curves for improved constrained
nonlinear blind equalizer for channel 1.
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Fig. 21. BER curves for improved constrained
nonlinear blind equalizer for channel 2.

Bayesian equalizer in channel 1. The proposed improved
system operates with only the received signals and the
decision of the equalizer. Hence, this system is considered
to be easily applied to other equalization systems.

7. Conclusions

In this paper, a new adaptive equalizer is proposed in
which the nonlinear filter can be adjusted without using
training signals. An optimum equalizer with a constraint in
the input is derived and the performance limitation of the
proposed scheme is discussed. By computer simulations,
performance evaluation of the proposed system is carried
out. It is shown that the proposed system is superior to the
conventional equalizers in terms of transmission efficiency.
Further, an enhanced system is proposed for improved
performance in a linear communication channel. It is shown
that the BER characteristics in the enhanced system are
substantially enhanced. This enhanced system is consid-
ered applicable to other equalization systems.

In this paper, the performance of the proposed system
is discussed for a linear communication channel. It is to be
expected that this system will exhibit excellent charac-
teristics for a nonlinear communication channel since it has
a nonlinear characteristic. In the future, it is planned to
investigate the performance for a nonlinear communication
channel. Also, in the present paper, the proposed equalizer
is evaluated for a time-invariant channel. In the future,
evaluations for a time-varying channel in the presence of
Rayleigh fading are planned.
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