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SUMMARY

In this paper, we consider the application of adaptive
linear filters adjusted by stochastic gradient algorithms to
the suppression of multiple-access interference in
DS/CDMA communications. It is pointed out that the line-
arly constrained constant modulus algorithm (LCCMA)
cannot converge to the optimum point if the desired user
magnitude is less than a critical value. Next, we propose to
use the linearly constrained differential constant modulus
algorithm (LCDCMA), and show that the LCDCMA al-
ways converges to the optimum point regardless of the
desired user magnitude. Several simulation results show the
following three points. First, the LCDCMA provides better
performance than existing algorithms because the variance
of the weight vector adjusted by the LCDCMA is less than
that by existing algorithms. Second, the LCDCMA is rela-
tively insensitive to the estimation error of the desired signal
vector. Third, the LCDCMA combined with a blind channel
estimation algorithm is useful. @ 2001 Scripta Technica,
Electron Comm Jpn Pt 3, 85(1): 1-13, 2002
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1. Introduction

The performance of direct-sequence/code-division
multiple-access (DS/CDMA) communication systems is
limited by interference from simultaneous communicating

users, that is, muitiple-access interference (MAI). Suppres-
sion of the interference is an important issue to increase the
capacity of CDMA systems [1]. Receivers using a linear
filter with an adjustable weight vector have been investi-
gated actively because they can suppress MAI with the
information of only the desired user even in an unknown
environment {2]. Among techniques to determine the
weight vector of such a linear receiver, blind techniques
have received considerable attention since they need no
training sequences which waste channel bandwidth [3].
Blind techniques can be classified into two categories: batch
processing methods [4, 5] and adaptive methods [6, 7).
Our focus in this paper is on stochastic gradient algorithms
in the latter category because of their simplicity.

The first seminal approach of blind adaptive MAI
suppression in Refs. 6 and 7 has been based on the principle
of the linearly constrained minimum variance (LCMV) [8]
which was originally developed for adaptive array anten-
nas. The principle of the LCMV approach is to minimize
the receiver output variance without canceling the desired
component. When a stochastic gradient algorithm based on
the LCMV criterion (LCMVA) is used, the mean weight
vector converges to an equivalent to the minimum-mean-
square-error (MMSE) solution. However, the weight vector
adjusted by the LCMVA fluctuates around the optimum
point {7], so that error probability performance degrades.
Another disadvantage of the LCMVA is that it may cancel
the desired component at the receiver output if there are
inaccuracies in the estimate of the desired signal vector
which depends on the desired user’s spreading code and
timing, and is needed for linear constraints [7].

The constant modulus algorithm (CMA) is known as
an alternative blind stochastic gradient algorithm for adap-
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tive antenna arrays [9]. If the CMA is applied to MAI
suppression, it can converge to an undesired local minimum
[10]. To overcome this disadvantage, several authors have
independently proposed use of the lincarly constrained
CMA (LCCMA) [11] for MAI suppression [12-14]. The
principle of the LCCM approach is to minimize the devia-
tion of the receiver output from it constant modulus without
canceling the desired component. Consequently, the de-
sired component can be expected 10 be protected from being
significantly canceled even if there are inaccuracies in the
estimate of the desired signal vector |13, 14]. Moreover,
when the receiver output approaches the target constant
modulus, the variance of the weight vector adjusted by the
LCCMA can be expected to be relatively small. As for its
optimality, it bas been reported that if the desired user
amplitude is 1 in the absence of channel noise, the LCCMA
can converge to a point where the MAI is canceled com-
pletely [13]. However, no optimality analysis has as yet
been made in the situation where the amplitude differs from
1. We will point out that the LCCMA cannot converge to
the optimal point if the desired user magnitude is less than
a critical value.

In this paper, to overcome the disadvantages of the
conventional algorithms, we propose use of the linearly
constrained differential CMA (LCDCMA) [15] for MAI
suppression. The principle ot the LCDCMA is to minimize
the difference in the receiver output magnitude between two
different time instants. Similar to the LCCM criterion, it can
be expected that the LCDCMA is insensitive to the estima-
tion error of the desired signal vector because it keeps the
output power constant rather than minimizes it. It can also
be expected that the LCDCMA provides better error prob-
ability performance because the variance of the weight
vector adjusted by the LCDCMA becomes small if the
output magnitude becomes constant. As for its optimality,
we will show that the optimal solution can be obtained by
the LCDCMA in the absence of channel noise regardless
of the desired signal magnitude.

In multipath channels, the desired signal vector varies
with the desired user’s channel characteristics in addition
to its spreading code and timing. Then, it is important for
linearly constrained stochastic gradient algorithms to com-
pensate the variation of the desired signal vector. Ap-
proaches making algorithms more insensitive to the
inaccuracies in the estimate of the desired signal vector (7,
16, 17] are simple but do not necessarily provide the opti-
mum solution. There are two approaches which can provide
the optimum solution: one uses multiple constraints to
extract only the desired component in each path [18], and
the other estimates the correct desired signal vector [19, 20).
The former has the drawback of the high computational
complexity because it needs a number of adjustable weights
corresponding to each path. Therefore, we focus on the
latter which is relatively simple. In Refs. 19 and 20, the

(28]

channel parameters are estimated recursively using blind
algorithms and the estimated results are applied to the
LLCMVA. In this paper, we evaluate the performance of the
receiver using the LCDCMA, instead of the LCMVA,
which has desired properties as mentioned above. To esti-
mate the desired user’s channel characteristics, we employ
an alternative algorithm combining two approaches pro-
posed in Refs. 4 and 20.

2. Adaptive Receivers for CDMA Systems

2.1. Communication model

Consider asynchronous QPSK/DS/CDMA systems
| 1] with K users. The baseband transmitted signal from the
k-th user can be represented as

s(t) = 3 Axbeidas(t —iTy) (1)
=0

where A is the signal amplitude and 7, is the symbol
duration. The information symbol at time i,
by(i) € {1, e7™3, e 53772} is assumed 1o be an i.i.d. se-
quence, and the symbol streams of different users are as-
sumed to be uncorrelated. The spreading waveforms are of
the form

L.-1
w(t) =Y auPr(t-1T), 0<t< LT, (2
=0

where L. is the length of the spreading sequences,
T(=T,/L,)is the chip duration, ay; € {1} is the spreading
sequences, and Pr(1)=1(0<1<T7,), 0 (otherwise). The
impuise response of the channel from the X-th user to the
receiver is given by [4]

L-1

he(t) = Y hid(t = ITe) 3)
=0

where L is the number of resolvable paths and assumed to
be L << Lc. The coefficients {ly,} are complex channel
gains. Then, the composite response, taking into account
the spreading waveform and channel impulse response of
the &-th user, is given by

1
gk(t) = /0 ai(7T)hi(t — 7)dT (4)

Then, the received signal can be represented as

K oo

rt) =Y Aebe(i)gr(t — iTy = ) +n(t)



where 1, € [0, T}) is the delay time of the k-th user, n(?) is
a zero-mean white complex Gaussian noise process with
power spectral density N2 and assumed to be independent
of the information symbols.

The structure of a receiver is shown in Fig. 1. The first
user is assumed to be the desired user. The aim of the
receiver is to demodulate b,(i). At the receiver, both the
delay time 7, and spreading sequence {a,,} are assumed to
be known. In the sequel, the system is assumed to be
synchronized to the desired user, that is, 1, =0. The re-
ceived signal is passed through the chip-matched filter
(CMF) and sampled at every 7.

1 iTp+n1 +({+1)7T.

71(i) = &=
T iTy+71 +IT,

where /=0, 1,...,L.— 1. The CMF output samples for
the i-th bit are collected in a vector r(i) =
lro(Dr (@) . .. rLr_](i)]T. Since the intersymbol interference
and MALI are contained in (i), the received vector can be
written as

r(i) = {bk(z Yog + bi(i — 1)hy

W [\’]x

(7)
4 b(i - 2)Ek} +n(i)

where n(i) = [ng(Hm (7). . . nLt_l(i)]T and its /-th component
is

iTh+m+(14+1)T-
n(i) = / n(t)dt
iTo+n +HIT,

A
The vector hy in Eq. (7) is given by [3, 2]

= 5’6 (m+vk+l) 5k - (Mm+uy)
hy = Z him +(1- 24
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Fig. 1. Structure of receiver.

where v, = L%_] (l_xJ is the maximum integer which does not
exceed x), 8, = 1, — ¥T,, and

“(n) =0~ 0 ako ar1 -~ @kL.—n-1]"

To rearrange the expression in Eq. (8), we introduce the
following vector:

. 8 . o N . .
s = e (1 8 e

c

A
Then, h; can be rewritten as

hk = Z hkmh(m)

m=0

Similarly, i and h; can be written as

hy = Z hime™
m=Q
hy = Z hkm_(m)
m=0
where
~(m) Ok . (mAvi+1) ( O ) « (M)
c = =a +l1-=}a;
k T,k T, ] %
Z(m)  __ 6’5 =(m+vi+1) ( ak) =(m+u)
¢ = za +{1-=}4a
k Tc k Tc k
é’(cn) — [akl.,,-—n AkL.—n+l Okl —1 0 ... OJT
& = [akaL.—n GkaL.—n+1 ---@kLe1 O -+~ O]T

Separating the desired component from other com-
ponents in r(i), we then have

r(i) = A1b(i)h; + HAb(i) + n(i) ©)

where
A = diag[A, Ay Ay A2 As - Ax Ak Ag]
b(i) = [b1(i—1) bi(i —2) b2(i) bo(i - 1) b2(i ~ 2)
 bic(d) bie(i = 1) by (i ~ 2|7
H = [hy by hy hy hy ---hx hx hg]
We call l,;, in Eq. (9) the desired signal vector. To express
the desired signal vector as the combination of the spread-

ing sequence and channel impulse response, the following
matrix and vector are defined:



c, = [‘5(10) &V .. é(lL—l)] (10)
hy = [hiohu -~ hap—a]” an

Then, the desired signal vector becomes
h; = Cih, (12)

2.2. Linear adaptive filtering

When the received signal vector r(i) is given as an
input, the output of a linear filter is given by

(i) = wir(i) (13)

where w is a weight vector.
The mean square error (MSE) between the training
signal {b,()} and filter output is given by

aw) = 3E [ -] a4

A receiver whose weight vector minimizes the MSE is
known as the MMSE receiver [2]. The weight vector which
minimizes J{w) is known as the MMSE solution and given
byw,=A lR"'ﬁ,, where R = E[r(/)rf(i)]. When the channel
noise is negligible, the MMSE solution can cancel the
interference completely [4]. In this paper, the weight vector
which can cancel the interference completely is referred to
as the optimum solution. Our attention in this paper focuses
on techniques to obtain the optimum solution without the
use of the training sequences.

One such technique is the LCMV. The basic idea of
the LCMV is to minimize the output variance

In(w) = 3E [19(0)P] as)

under a linear constraint Clw = g [6-8]. Consider the case
where the impulse response of the channel h, is known and
the constraint vector g is chosen as

_ a6
€= ol

Then, the linear constraint becomes w”ﬁ, = |th,}, and the
weight vector which minimizes J,,(w) can be obtained by
using the method of Lagrange multipliers as
w;=llhy IIR"ﬁ;/(ﬁf’R"ﬁ,). Since the direction of the vector
is equal to that of the MMSE solution, the error probability
performance of the LCMYV receiver and MMSE receiver
becomes identical. However, if there exists the estimation
error of the desired signal vector, performance degradation
is incurred due to cancellation of the desired component. It

should also be noted that when a stochastic gradient
method, referred to as LCMVA, is used 1o minimize J,,,, the
performance also degrades due to the fluctuation of the
weight vector. The LCMVA is given by

w(i+1) =P {w(i) — wr@@)y* (i)} + F a7

where p,, is the step gain and

P

1-C (cchl)_'CIT (18)

F = C (CTCI)~lg (19)

3. LCCMA Receivers

3.1. Analysis of cost function

The constant modulus (CM) criterion-based tech-
niques [12-14] which use the knowledge that a transmitted
waveform in DS/CDMA systems has a constant envelope,
minimize the following cost function:

Jew) = 3E[Iw@ 17 o

under a linear constraint C]w = g. Since the criterion at-
tempts to keep the output magnitude constant, it can be
expected that the desired component is not canceled com-
pletely even if there is an error in the desired signal vector
estimate [13, 14]. In Ref. 13, the property of stationary
points of the cost function J(w) has been analyzed in the
case of A; = 1 and L = 1. In the sequel, the property of the
stationary points is investigated in more general cases.

Let us consider the noiseless case. Under the con-
straint in Eq. (16), the filter output is given by

y(i) = A ()| + wPHADBG) 1)
The vector 1 € C” is defined as
u=AH"w (22)

Each component of this vector, u;, can be regarded as the
response to a virtual interfering user which is introduced to
model the effect of asynchronous access and multipath. The
number of virtual interfering users is J=3K—1. If the
columns in AH” are linearly independent, it is sufficient to
investigate the property of the stationary points of J, which
is expressed in terms of u rather than w [21]. We use the
following gradient operator [22] to obtain the stationary
points of J.
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(23)

where the subscripts R and / denote real and imaginary part,
respectively. In addition, the following Hessian [23] is used
to investigate the property of the stationary points:

Fu(5) A (B8)

_ u

QJe = 2 (207 a_(aiyT | Y
au (3 ) aus \su

Taking into account the fact that the information symbol
sequences are i.i.d. ones and mutually uncorrelated, the cost
function can be expressed as

1 1, 1
Jew) = AN - AT+ 5

1 1
+(A |y - §)UHU + §(uHu)2
1 )
1 Z |ui|‘ 25)

The i-th component of the gradient vector is given by

aJ.
Pl G LU 5+ Z fusl? + 3l

J# (26)

Moreover, the entries of the Hessian are given by

8% _0°J.

L — A2 2 _ 2 2

& = Sude our Ajllhg||* - + Z [ o
0%J. . L.

& = Buiau; =ujuj, Jj#i (28)

o o P _1 ()

Sy = Bu';’ =3 u, (29)
027

3 = = =ujuj, j#i (30)

Bugau J

It is clear that the right-hand side of Eq. (26) becomes zero
when «; = 0. In other words, u = 0 is a stationary point. The
point u = 0 is the optimum one where all interference
components become zero. Next, let us clarify whether only
the point is a minimum or not.

1) The case of AjllhIF > 1/2:

In this case, the parenthesis of the right-hand side in
Eq. (26) is always positive, Thus, i, must be zero so that the
right-hand side in Eq. (26) becomes zero. Therefore, then,
u =0 is the unique stationary point. Then, the Hessian is

1
QJe = (AfIl|* - 51 >0 @n

and is positive definite. We can conclude that u = 0 is the
unique minimum.

2) The case of Afllh, I = 1/2:

The rlghl -hand side of Eq. (26) becomes
(Zf,,lujl + lu /2)u Since this term is nonzero if #, # 0, it
can be zero lf and only if «; = 0. Thus, u = 0 is the unique
stationary point. Then, the cost function is

Je(u) 2 Zz |U1|2lu1|- Z |

i=1 j#i 1-1 (32)

Consider a point @ @ which is slightly moved from the
stationary point. Then, since the change of the cost function
is

Je(1) — Jc(0)

J 1
ZZ |11 + 32 i, |*
=1 je

1=1 (33)

o wi=

\

we can conclude that u = 0 is the unique minimum.

3) The case of Afllh, I < 1/2:

This case can be classified into three cases.

3-a) The case of u, = 0 (Vi):

As mentioned above, this is the optimum solution.
Then, since the Hessian is

1
QJe = (Aflim|* = 5)I < 0 (34)

that is, negative definite, u = 0 is not a minimum.

3-b) The case of u; # 0 and ;= O(vj=i):

At a stationary point, dividing the right-hand side of
Eq. (26) by u, and rearranging it, we obtain
Iu,.l2 = -2Afl|h,|l2 + 1. Then, entries of the Hessian are

1
e = —Ahy|?+ 3 (35)
e = 0, l#k 36)
Spp = 2( 1) (37)
0 ki
s o= 0, l#k (38)

Then, since the k-th principal submatrices of the Hessian,
A, are



—Ah|? + 3 > o,
Ay = 1<k<J+i-1

0, J+i<k<2
(39)

then QJ. is semi-positive definite. Thus, the point where
only one response is nonzero is a minimum.
3-¢) The case of ir; 2 0 (1 SisR)andu;=0(j>R):
In this case, R(> 1) responses are nonzero Let us
assume without loss of generality that the responses from
the first to R-th virtual user are nonzero. At a stationary
point, dividing the nght—hand side of Eq (26) by u; and
rearranging it, we obtain lu* = 2A5lh 17 - | + 2u’u. The
right-hand side of this express:on tor nonzero ; is inde-
pendent of i. Thus, since uu = Rlu, I, we obtain

2432 — 1

1- 2R (40)

qu‘Q =
Then, the first principal submatrix of the Hessian is

Al - 3
—_—— = Q0
Ay 1—%R > 41)

Moreover, the second principal submatrix is

A2y 2 - 3\°
A?*“‘(—T.Tr) <0 (42)

Thus, we can conclude that since the Hessian QJ.. is indefi-
nite, this point is not a minimum,

From l) and 2), we can find that u = 0 is the unique
minimum if A} Ilh I’ 2 1/2. Moreover, from 3), a necessary
condition to guaramee that ¥ = 0 is a minimum is
Aflih | > 1/2. Thus, it can be concluded that the sufficient
and necessary condition to guarantee that the solution
where the interference is canceled completely is the unique
minimum is Afllh,ll2 2 1/2. If this condition is not satisfied,
the LCCMA receiver cannot cancel the interference.

3.2, LCCMA
A stochastic gradient algorithm to minimize J (w) is
given by
w(i+1) = P{w() - () - Dr@)y" (i)}
+F (43)

where .. is the step gain. If the output magnitude Iy is close
to unity, little performance degradation due to the weight
fluctuation is incurred because the update of the weight

vector is very small. However, if g is given by Eq. (16), the
magnitude of the response to the desired signal vector
becomes A Il |l because of the linear constraint. Therefore,
if Allhy Il is far from unity, performance degradation can be
caused by the large weight fluctuation.

4. LCDCMA Receivers

4.1. Analysis of cost function

In the area of adaptive array antennas, the use of the
linear constrained differential constant modulus (LCDCM)
criterion has been considered [15]. It minimizes the follow-
ing cost function under a linear constraint Clw = g;

Jaw) = E Iy ~ 1y - DIPP] )

This criterion forces the output magnitude at i-th time to be
equal to that at (i — D)-th time. Thus, like the LCCMA
receivers, we can expect that the desired component is not
canceled completely even if there exists the estimation error
of the desired signal vector. In Ref. 15, the case of D = |
was considered. In the case of D > 1, we can expect that the
output becomes constant modulus due to the constraint
when the interference is suppressed. In the situation con-
sidered in this paper, when D = | and 2, it is difficult to
analyze the property of the cost function because common
signal components are contained in both y(i) and y(i — D).
Thus, in the analysis below, we assume D > 3, In Section 6,
simulation results for D = | and 3 are compared.

Next, let us consider the property of the stationary
points of the cost function J, in noiseless situation. The
weight vector is assumed to be linearly constrained by Eq.
(16). Taking into account the fact the information symbol
sequences are i.i.d. ones and mutually uncorrelated, when
D > 3, the cost function can be written as

2 2 H 4
Ja(u) = Ay |*u”u + (u u)? 2Z|u,|

=1
(45)

The i-th component of the gradient vector is given by

dJg
5 = Al +ufu—ju
' J
= (AP + ) il (46)
J#i

Since AjlihyI”* > 0, the parenthesis in the right-hand side of
Eq. (46) is always positive. Thus, the right-hand side of Eq.
(46) becomes zero only if u; = 0. Therefore, u = 0 is the



unique stationary point. Next, let us evaluate the Hessian.
Entries of the Hessian are given by

J
ek = Afflh|® + Z |1 47)
j#k
ekt = uku,', { # k (48)
s = 0 49)
Skl = u;u,‘. l 96 k (50)

At the optimum stationary point u = 0, the Hessian is

QJa = Afly|°T > 0 (51)

Thus, unlike LCCMA, the point where interference is can-
celed completely is the unique minimum regardless of the
desired signal magnitude A,llhll. Note that the solution is
equivalent to the MMSE solution because the latter solution
can also cancel the interference completely [4] if the chan-
nel noise is negligible.

4.2. LCDCMA

A stochastic gradient algorithm which minimizes
J (w) is given by

w(i+1)
=P [w(i) - pafly(@)I? - Iy - D)’} (52
Ar(i)y’ (i) —r{i = DY)y (i - D)}] + F

where p, is the step gain. We refer to it as the LCDCMA.
We can expect that the weight fluctuation by the LCDCMA
can be small because the term (Iy(i)l2 - (i = D)I*) becomes
small if the output magnitude settles a constant modulus.

5. Blind Channel Estimation Algorithm

As mentioned in the previous section, the constraint
vector g must be set to Eq. (16) to obtain the optimum
solution by the LCDCMA. This means that the impulse
response of the channel h, must be known. In this paper,
we focus on the following channel estimation methods
based on the subspace approach [24]:

ming?Bg subject to |lg|l = 1 (53)

where B = CI[I-V,VY|C,. In this paper, we employ an
adaptive technique based on this subspace approach [4, 20].

If [C,H] has full column rank, g = h/llh i (and its scaled
version) is the unique solution of (53), so that the correct
channel estimation can be obtained 15]. In (53), V. is a
matrix whose columns are the eigenvectors corresponding
to the & largest eigenvalues of R. £ is the number of the
vector corresponding to the signal subspace. and satisfies
h: > 67, heyy = 67 (67 is the noise variance) when the eigen-
values 2i=1....,L.) of R are arranged in decreasing
order. Since & depends on the conditions, such as the
number of users, spreading sequences used, and so on, it
cannot be known at the receiver. Then, techniques using
AIC can be employed to estimate & [4]. Although this paper
assumes that & is known, as will be shown in Section 6, we
can expect that the performance degradation due to the
estimate error of £ is small because of the robustness of the
LLCDCMA unless the estimation error is large.

Subspace-based adaptive estimation techniques have
been proposed in Refs. 4 and 20. In Ref. 20, a minor
component analysis technique is used to obtain the eigen-
vector corresponding to the minimum eigenvalue of the
matrix B, and the number of parameters to be estimated is
L. On the other hand, in Ref. 4, a penalty function method
is used to obtain the eigenvector corresponding to the
minimum eigenvalue of the matrix D*D(D = [V, C,]), and
the number of parameters to be estimated is L + £. It has
been known that minor component analysis techniques may
diverge [26]. Thus, inthis paper, we use the penalty function
method to obtain the eigenvector corresponding to the
minimum eigenvalue of the matrix B. Consequently, diver-
gence of the algorithm could be avoided and the number of
parameters to be estimated could be smali. As in Ref. 4, the
following function is defined:

1 ¢ ,
9(g.c) = 38" Bg+ 7(g"g - 1)’ (54)

where ¢ is a positive constant chosen to be larger than the
minimum eigenvalue of B. Using the analytical results in
Ref. 4, we can show that a scaled version of the minimum
eigenvector of B is the stable stationary point of g(g, ¢).
Now, we need V| to solve the eigenvalue problem. It might
be obtained by subspace tracking algorithms (4, 20]. A
recursive algorithm where the signal subspace V, is com-
puted by the PASTd algorithm [25] and ¢(g, ¢) is minimized
by the steepest descent method simultaneously, is summa-
rized as follows:

Step 1) Initialization
Set constants c. B, and p,, appropriately.

g0)=[10--- 0T
u,=er. k=0.1.---.6-1
MO)=1, k=0,1,---,6-1



Step 2) Signal subspace estimation

xo(1) = r(i)
For k=0: £-1Do

(1) = ufl (i - 1)xx(3)
Ak (@) = BAk(i — 1) + |y(i)?
(i) = ug(i — 1) + {xx(i)
—ug (i — Dy (D)} yr(9)/ M (7)
Xi+1(2) = Xi (1) — ug(dyn(7)

End

Step 3) Channel estimation
V(i) = [uo(@) wi (@) -+ ug-1(i)]
B(i) =CT [1 —V,()VH (i)] C
8(i) = g(i — 1) — uy (B(i)g(i - 1)
+e{gf(i-1)g(i - 1) -1} g(i — 1)]

Step 4) Repeat from Step 2 10 Step 3 until g converges.

where € is a vector whose k-th component is 1 and other
components are 0.

6. Simulation Results

Performances of the LCDCMA have been evaluated
via computer simulations. The LCDCMA was compared
with the LMS algorithm, LCMVA, and LCCMA. When
stochastic gradient algorithms are used, although perform-
ance degradation due to the weight fluctuation is small if a
large number of data can be used for training, it is not
always practical. Thus, we considered the case where the
number of initial training data is relatively small.

An asynchronous DS/CDMA system with K = 5
users was considered. The spreading sequences were Gold
sequences of length 31. The number of channel paths was
set to L = 3. The channel impulse response {h,,} were
chosen using complex Gaussian random generator and set
to lIh,I* = 1. Differentially encoding was employed since
there is an arbitrary phase ambiguity in channel estimation
results. In the sequel, the energy of the desired signal per
bit is denoted by E,, E, = AjT,/4. All the interfering signals
were assumed to have the same energy which is denoted by
E,. The energy ratio between the desired signal and inter-
ference was setto be E;/E, = 10dB. In the following, unless
otherwise mentioned, E /N, = 13 dB, A, =10¥2,D =3,
and the initial weights of the LCMVA, LCCMA, and
LCDCMA were w(0) = F, and that of the LMS algorithm

was w(0) = 0. All results were obtained by averaging over
100 different samples.

In Fig. 2, time evolution of the signal to interference
and noise ratio (SINR) is shown when the desired signal
amplitude is A, = 10V2 and 0.1V2. SINR at time i was
computed by

AW (h?
SINR(i) = wH(HR,, (1)w(i)

where R, (i) is the autocorrelation matrix of the sum of
interference and noise components and was computed by
R,(1) = SN0 iEH(i) /100, where the superscript (k)
represents the k-th sample, and FX(i) = r'() — A,5{0()h,.
The step size of the LCDCMA was chosen so that SINR
converges in approximately 500 iterations. As a result,
when A) = [0N2, p; =2 x 107%, and when A, = 0.1V2, p, =
2x 10°!, The step sizes of the LMS algorithm, LCMVA,
and LCCMA were chosen so that the convergence rate of
SINR is almost the sume as that by the LCDCMA. As a
result, when A, = 10V2, ;= 10, i, = 10°%, p =2 x 109,
and when A, =0.1V2, W+ 1072, =102 p.=107 In
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Fig. 2. Performance comparison for stochastic gradient
algorithms.



Fig. 3, the variance of the weight vectors is shown. Figure
4 shows that the magnitude of the response to each virtual
user at filter output, u; = (AH”)kw. for the LCDCMA and
LCCMA [(AH"), represents the k-th column vector in
AH"). Figure 5 shows bit error probabilities obtained by
averaging the decision error rate for 10,000-bit data after
1000 training iterations. .-

First, let us consider the LCMVA. We can find that
the SINR of the LCMVA is lower than that of the LMS
algorithm regardless of A,. As mentioned in Section 2.2,
this may be due to the weight vector fluctuation. It is seen
from Fig. 3 that the weight variance of the LCMVA is larger
than that of the LMS algorithm. Although the weight vari-
ance can be smaller if a small step gain is used, then the
convergence rate becomes slow. Due to the weight fluctua-
tion, we can observe from Fig. 5 that its error probability is
worse than that of the LMS algorithm.

Next, we consider the LCCMA. It is seen from Figs.
4(b) and 4(d) that all the interference can be suppressed
when A = 10V2, but the 6th virtual user signal cannot be
suppressed when A, =0.1V¥2. We can observe from Fig.
2(b) that the SINR of the LCCMA is very low when
A, =0.1¥2. Moreover. it can be observed from Fig. 5(b)
that its error probability is near 0.5 regardless of E, /N,
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According to the analytical result in Section 3.1, the
LCCMA cannot suppress the interference in the case of
A< 0.5v2. Note that the analysis is based on statistical
average and does not take into account the channel noise.
On the other hand, the simulation is based on stochastic
approximation by the LCCMA and takes into account the
channel noise. Although there exists such a difference be-
tween the analysis and simulation, we could find in simu-
lation that interference suppression ability degrades as A,
becomes small if A, is smaller than 0.5V2. On the other
hand, when A, = 10V2, we can observe from Figs. 2(a) and
5(a) that achievable SINR by the LCCMA is lower than
those of the LCDCMA and LMS algorithm, and its error
probability is worse than those of the other algorithms. As
mentioned in Section 3.2, the reason may be that the weight
variance becomes large since the output magnitude be-
comes A, llh, Il due to the linear constraint when the interfer-
ence is suppressed. In practice, we can see from Fig. 3(a)
that the weight variance of the LCCMA is targer than those
of the LCDCMA and LMS algorithm.

Last, the LCDCMA is considered. One can see from
Figs. 4(a) and 4(c) that the interference can be suppressed
regardless of the desired signal amplitude as shown in the
analysis of Section 4.1, even in the presence of channel
noise. From Figs. 2 and 5, we can observe that the SINR
and error probability characteristics of the LCDCMA are
almost the same as those of the LMS algorithm regardless
of the desired signal amplitude. Moreover, as expected, we
can confirm from Fig. 3 that the weight variance of the
LCDCMA is relatively small and almost the same as that
of the LMS algorithm. In the above results, the parameter
D was set to 3. Although we chose D 2 3 for the purpose of
analysis in Section 4.1, D is desired to be small so as to save
the memory requirement. In Fig. 6. the error probabilities
for D =1 and 3 are shown. The two curves overlap. We can
expect from the result that D can be set to 1 in practice. The
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Fig. 6. Comparison of bit error probabilities for
LCDCMA with D = | and 3.

analysis in the case of D < 3 is an important issue for future
investigation.

Next, the robustness of the LCDCMA against the
estimation error of the desired signal vector is considered.
In the case where there is an error 8hy, =h,, - I}, in the
estimate /1, of a channel coefficient i, the error probability
against the standard deviation of 84, is shown in Fig. 7. The
estimation error 84, was chosen by Gaussian random gen-
erator with zero mean. The step gains were determined in
the same manner as the previous simulations. We can see
from Fig. 7 that the LCDCMA is superior to both the
LCMVA and LCCMA. One may claim that the robustness
against estimation error is not clear from Fig. 7 since the
LCDCMA is superior to the others even if there is no
estimation error. Since the robustness against the estimation
error depends on the cost function, it is difficult to evaluate
it from the results by stochastic gradient algorithms due to
the weight fluctuation. Instead of the stochastic gradient
algorithms, we evaluate it by using the steepest descent
methods. The error probability obtained by the steepest
descent methods using statistics obtained from 1000 sam-
ples is shown in Fig. 8. The standard deviation of the
estimation error was set to 0.1. As expected, the LCDCM
criterion outperforms the LCMV criterion.

Now, we consider the case where the interference
suppression is carried out by using the estimated channel
characteristics. In this case, since there may exist error in
channel estimates, performance degradation in interference
suppression may be incurred. As shown in the previous
results, the LCDCM-based method is robust against the
estimation error of the desired signal vector, so that per-
formance degradation can be expected to be small. First, we
consider the channel estimation algorithm described in
Section 5. In order to obtain the number of vectors which
represent the signal subspace, the eigenvalues of the auto-
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Fig. 7. Bit error probability of stochastic gradient
algorithms in the presence of channel estimation error.
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Fig. 8. Bit error probability of steepest descent methods
in the presence of channel estimation error.
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Fig. 11. Bit error probability by LCDCMA based on
estimated channel impulse response.

correlation matrix of the received signal are examined. In
Fig. 9, we plot the eigenvalues in decreasing order. We can
find from the result that the seven largest eigenvalues are
dominant. In the case where the estimate of £ is setto ¢ =
7. Fig. 10 shows the time evolution of the following esti-
mation error:

9

(i) = HL")e—jamg.(m LI

et (LYY

Estimation accuracy which guarantees that the performance
degradation is small was determined from Fig. 7. The
parameters were chosen so as to achieve accuracy in ap-
proximately 250 iterations. As aresult,c = 10, =0.95, and
Me=5x 107" It can be seen from Fig. 10 that the error
decreases with time.

Lastly. the error probability of the LCDCMA with the
linear constraint using the channel impulse response esti-
mated by the channel estimation algorithm is shown in Fig.
['1. In addition to the case where the estimate of £ is set 10
be ¢ =7, the results for ¢ = 5 and 15 are also shown as the
cases containing the estimation error of &. Moreover, the
result of the perfect channel estimate shown in Fig. 5 is also
shown as a reference. In the case of & =7, the result is
almost the same as that of the perfect estimation case.
Moreover, in the cases of ¢ =5 and 15, the degradation of
error probability is very small. Therefore, we can conclude
that the LCDCMA with the channel estimation algorithm
is effective.

7. Conclusions

In this paper, we have considered stochastic gradient
algorithms for adaptive receivers to suppress the MAI in



DS/CDMA communications. It has been shown that the
LCCMA cannot suppress the interference when the desired
signal magnitude is less than a critical value. On the other
hand, we have shown that the LCDCMA can suppress the
interference regardless of the desired signal magnitude. It
has also been shown that the weight variance of the
LCDCMA is small, so that the LCDCMA can provide
superior error probability performance. It has been demon-
strated that the LCDCMA is more robust to the estimation
error of the desired signal vector compared to the LCMVA.
Moreover, we have shown the feasibility of the LCDCMA
with the blind channel estimation algorithm.

Although this paper has considered Eq. (20) as a CM
criterion, alternative methods have been considered in Refs.
11 and 14: the desired modulus of the output is adjusted
adaptively, or is set to be an appropriate constant instead of
1. Since the convergence properties of these methods have
not been cleared, we have not considered these methods.
Theoretical consideration of these methods and comparison
with the LCDCMA are interesting issues and might be
studied in the future.

Further researches include finding conditions to en-
sure the stability of the algorithm and clarifying the relation
between the convergence rate and weight fluctuation.
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