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PAPER
Blind Adaptive Beamformer for Cyclostationary Sources with
Application to CDMA Systems

Teruyuki MIYAJIMA†a), Member

SUMMARY In this paper, a simple blind algorithm for a beamform-
ing antenna is proposed. This algorithm exploits the property of cyclo-
stationary signals whose cyclic autocorrelation function depends on delay
as well as frequency. The cost function is the mean square error between
the delay product of the beamformer output and a complex exponential.
Exploiting the delay greatly reduces the possibility of capturing undesired
signals. Through analysis of the minima of the non-quadratic cost func-
tion, conditions to extract a single signal are derived. Application of this
algorithm to code-division multiple-access systems is considered, and it is
shown through simulation that the desired signal can be extracted by ap-
propriately choosing the delay as well as the frequency.
key words: cyclostationarity, DS/CDMA, adaptive array antenna, blind
algorithm, higher-order statistics

1. Introduction

Adaptive beamforming is an attractive technique for sig-
nal separation in wireless multiuser communications. There
is especially a strong and practical need for blind adap-
tive beamforming that does not require use of a training
sequence and thus avoids reducing the effective data rate.
An effective and popular blind beamforming algorithm is
the constant modulus algorithm (CMA) [1] which extracts a
signal by restoring the constant modulus property disturbed
by interference from other signals. The CMA beamformer
extracts a single signal if the signal satisfies a certain con-
dition regardless of whether the signal is desired or not [2].
This signal choice ambiguity, known as the capture prob-
lem, cannot be avoided as long as only the constant modulus
property is used because this is a common property of com-
munication signals. To resolve this ambiguity, additional
signal information must be used.

Most communication signals are characterized by cy-
clostationarity, which depends on the modulation scheme,
carrier frequency, data rate and so on [3]. The cyclosta-
tionarity can be exploited as additional information to ex-
tract the desired signal. The spectral self-coherence restoral
(SCORE) algorithm [4] exploits the second-order cyclosta-
tionarity in which a signal is correlated with a frequency-
shifted version of itself. The least-squares SCORE algo-
rithm is simple to implement and works well as long as one
can find a frequency parameter that ensures only the desired
signal exhibits cyclostationarity. If several signals exhibit
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cyclostationarity at the given frequency, the least-squares
SCORE algorithm cannot extract only the desired signal and
tends to extract a mixture of the signals. Such a situation
arises in a direct-sequence code-division multiple-access
(DS/CDMA) system [5] where all users employ the same
modulation scheme, carrier frequency, symbol rate, chip
rate, and chip waveform, with the only difference among
users being the spreading codes. More powerful SCORE
variations such as phase SCORE [4] have an extremely high
computational cost.

In [6], Castedo and Figueiras-Vidal proposed a blind
algorithm, referred to as the CF algorithm, which ex-
ploits higher-order statistics regarding cyclostationary sig-
nals. The non-quadratic cost function is the mean square
error between the square of the beamformer output and a
complex exponential. The CF algorithm can extract the de-
sired signal, though, if only the desired signal is cyclosta-
tionary with respect to the given frequency. Even if there are
several signals which exhibit cyclostationarity for a given
frequency, the CF algorithm tends to extract one of these
signals, rather than a linear combination of them. However,
signal choice ambiguity regarding these cyclostationary sig-
nals is still a problem.

In this paper, we propose a modified CF algorithm that
exploits the property of cyclostationary signals whose cyclic
autocorrelation function depends on delay as well as fre-
quency shift. In the new cost function, the square of the
beamformer output in the CF cost function is replaced with
the delay product. The proposed algorithm can be imple-
mented through a simple stochastic gradient algorithm. Ex-
ploiting the delay reduces the capture problem. We show
that the proposed algorithm can extract only the desired
signal successfully in CDMA communications where the
SCORE and CF algorithms fail.

There are currently several blind techniques exploiting
cyclostationarity, in which the delay as well as the frequency
shift is taken into account [7]–[9]. In [7] and [8], blind signal
separation was considered, thus the signal choice ambiguity
inherent to blind signal separation still exists. The cost func-
tion presented in [9] is the mean squared error between the
sum of weighted complex exponentials and a delay product
of the beamformer output. The delay product is the product
of the output and the delayed conjugate output, whereas the
delay product without the conjugate is used in the algorithm
presented in this paper. The properties of its minima have
not been analyzed, though, so it is not clear whether the al-
gorithm can extract only the desired signal when several sig-
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nals are cyclostationary with respect to the same frequency.
This paper is organized as follows. Section 2 presents

the problem formulation of blind beamforming and briefly
introduces cyclostationarity. Section 3 introduces a new al-
gorithm and analyzes the properties of the stationary points
of the cost function. In Sect. 4, application of the proposed
algorithm to CDMA systems is discussed. Section 5 shows
simulation results to support our analytical results.

2. Cyclostationarity of Communication Signals

2.1 Communication Model

Let us consider a multiuser communication system where
there are K independent signals. The signal vector received
by an array of N antennae, denoted by the N × 1 vector x(t),
is described by the following model

x(t) =
K
∑

k=1

sk(t)a(θk) + n(t), (1)

where sk(t) is the signal arriving from the direction θk,
a(θk) is the steering vector associated with θk, and n(t) =
[n1(t), · · · , nN(t)]T is a noise vector. We define an N × K
mixing matrix formed from K steering vectors as

A △
= [a(θ1), a(θ2), · · · , a(θK) ] . (2)

The beamformer output is given by

y(t) = wHx(t), (3)

where w = [w1, w2, · · · , wN]T is the array weight vector and
(·)H represents the Hermitian transpose of a matrix. In the
following, the first signal is treated as the desired signal. The
purpose of the adaptive beamformer is to extract the desired
signal s1(t) from the received signal x(t) by adjusting the
weight vector w.

2.2 Cyclostationarity

In communication applications, the source signals can be
modeled as cyclostationary signals. This cyclostationarity
has been exploited in many signal processing tasks such as
signal detection and parameter estimation [3]. The second-
order cyclostationarity is characterized by the cyclic auto-
correlation function and the conjugate cyclic autocorrelation
function of sk(t) defined by

m̃α2k(τ) △=
〈

sk(t)s∗k(t − τ)e−i2παt
〉

, (4)

mα2k(τ)
△
=
〈

sk(t)sk(t − τ)e−i2παt
〉

, (5)

where (·)∗ represents the conjugate and the operation ⟨·⟩ is
the time-averaging operation:

⟨·⟩ △= lim
T→∞

1
T

∫ T/2

−T/2
(·)dt. (6)

The frequency shift parameter α is referred to as the cycle

frequency. A signal sk(t) is said to be cyclostationary if the
cyclic autocorrelation function or conjugate cyclic autocor-
relation function is nonzero at some frequency shift α and
some delay τ.

In this paper, we consider linear digital modulated sig-
nals whose analytical representation is given by

sk(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ak

∑

n

Iknak(t − nTk)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

ei2π fckt, (7)

where Ak is the signal amplitude, fck is the carrier frequency
(which is assumed to be nonzero), Ikn is a data sequence
with rate 1/Tk, and ak(t) is the pulse waveform. For exam-
ple, binary phase shift keying (BPSK) signals, Ikn ∈ {±1},
with rectangular pulse, ak(t) = 1 for t ∈ [0, Tk] and 0 for
t ! [0, Tk], have nonzero conjugate cyclic autocorrelations
at α = 2 fck ± l/Tk, l = 0, 1, · · ·, for nonzero delays τ.

2.3 Conventional Algorithms

The first blind beamforming algorithm to use cyclostation-
arity was the SCORE algorithm [4]. The cost function of
the SCORE algorithm is defined by

Js
△
=
〈

|y(t) − r(t)|2
〉

, (8)

where r(t) is the reference signal given by r(t) = cHx(t −
τ)ei2παt and c is the control vector which should be chosen
so that it is not orthogonal to a(θ1). The solution which min-
imizes the cost function is given by

ws = R̂
−1
xx R̂xr, (9)

where R̂xx and R̂xr are, respectively, the sample autocorrela-
tion matrix and cross-correlation vector. If only the desired
signal s1(t) has nonzero cyclic autocorrelation m̃α21(τ) " 0
for given α and τ, the vector R̂xr is proportional to a(θ1).
This means that the weight vector ws converges to the max-
imum SINR solution. On the other hand, if some signals
have nonzero cyclic autocorrelation for the given α and τ,
the SCORE algorithm extracts a mixture of these signals.

An important blind beamforming algorithm based on
higher-order cyclostationary signal statistics is the CF algo-
rithm [6]. The cost function of the CF algorithm is defined
by

Jc
△
=
〈

|ei2παt − y2(t)|2
〉

. (10)

The corresponding stochastic gradient algorithm is given by

w(n + 1) = w(n) + µce∗(n)y(n)x(n), (11)

where e(n) = ei2παn − y2(n) and µc is the step size. The min-
ima of the nonquadratic cost function were analyzed in [6].
In a single-user AWGN channel, the minima correspond to
the points where output SNR is maximized if the desired
signal has nonzero conjugate cyclic autocorrelation for the
given α and τ. In a noiseless multiuser channel, a single
signal which satisfies the following conditions can be ex-
tracted:
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κi(0) < 2
|ραi (0)|
|ραk (0)| , ∀k " i, (12)

where κk(0) is the kurtosis and ραk (τ) is the normalized con-
jugate cyclic autocorrelation (NCCA) function defined by

κk(τ) △=
m4k(τ)
{m2k(0)}2 , ρ

α
k (τ) △=

mα2k(τ)

m2k(0)
, (13)

where m2k(τ)
△
=
〈

sk(t)s∗k(t − τ)
〉

and m4k(τ)
△
=
〈

|sk(t)|2|sk(t

−τ)|2
〉

. If there are several signals which satisfy the con-
ditions, the desired signal cannot always be extracted: this
depends on the initial weight vector.

3. Modified CF Algorithm

3.1 Cost Function

The conditions in (12) imply that the CF algorithm cannot
distinguish the desired signal from other signals whose kur-
tosis and NCCA for a given frequency are almost the same
as those of the desired signal. Importantly, NCCA ραk (τ) de-
pends on delay τ as well as frequency α. Thus, the NCCA of
the desired signal can differ from that of the other signals for
some delay τ. This observation led us to exploit the delay as
well as the frequency.

A modified cost function is defined by

Jm
△
=
〈

|ei2παt − y(t)y(t − τ)|2
〉

. (14)

Clearly, in the case of zero delay (τ = 0), the new cost func-
tion reduces to the CF cost function in (10). This new cost
function is based on the fact that cyclostationary signals x(t)
generate spectral lines when they pass through a quadratic
transformation involving delays, i.e., x(t)x(t−τ) [3]. In prac-
tice, a nonzero delay is required in some cases. For exam-
ple, when the pulse waveform ak(t) is a rectangular pulse,
the zero delay product does not contain a spectral line at the
harmonics of the symbol rate. On the other hand, the de-
lay product generates spectral lines at the harmonics of the
symbol rate for any of a number of nonzero delays τ.

The method of steepest descent which minimizes the
cost function takes the form

w(n + 1) = w(n) − µm
∂Jm

∂w∗
, (15)

where the complex derivative operator is defined by [10]

∂

∂w∗
△
=

[

∂

∂w1R
+ i
∂

∂w1I
, · · · , ∂

∂wNR
+ i
∂

∂wNI

]T

, (16)

where (·)T represents the transpose of a matrix and (·)R and
(·)I represent the real and imaginary parts, respectively. In
practice, the stochastic gradient algorithm, obtained by re-
placing the time-average with its instantaneous value, is
used:

w(n + 1) = w(n) + µme∗(n) {x(n)y(n − τ)
+x(n − τ)y(n)} , (17)

where e(n) = ei2παn−y(n)y(n−τ) and µm is the step size. The
algorithm is very simple since the computational complexity
in each iteration is proportional to the number of antennae
N. In the following, we refer to this algorithm as the modi-
fied CF (MCF) algorithm.

3.2 Analysis of Stationary Points

We need to analyze the stationary points of our cost func-
tion since the function is a non-quadratic form of the array
weights. To search for optimum solutions using the stochas-
tic gradient algorithm, only the points corresponding to the
optimum solutions should be minima. The analysis of sta-
tionary points presented here was done in a way similar to
that in [6].

In the rest of this paper, we will use two key assump-
tions:

AS1) Signals sk(t) are zero-mean, symmetrical, and cyclo-
stationary: i.e., mα2k(τ) " 0 for some α and τ.

AS2) Matrix A has full column rank so that all signals are
separable.

AS1 is common in most forms of multiuser communication.
AS2 can be satisfied if the number of signals K is less than
the number of antennae N and the directions of arrival θk
differ from each other.

Now, we study a noiseless multiuser channel. Given α
and τ, the desired signal is assumed to have nonzero NCCA
|ρα21(τ)| " 0 and all signals can be classified into two sets:

A = { j : |ρα2 j(τ)| " 0}, Ā = { j : |ρα2 j(τ)| = 0}. (18)

The beamformer output can be written as

y(t) =
K
∑

k=1

gk sk(t), (19)

where gk
△
= wHa(θk) is the magnitude of the beamformer

response to the kth signal. In a desirable beamformer re-
sponse, all signals except the desired signal are completely
canceled; i.e., |g1| " 0 and gk = 0 for k = 2, · · · ,K.

For the sake of simplicity, we define new variables:

uk
△
= gk

√

m2k(0), k = 1, 2, · · · ,K. (20)

Taking into account assumption AS1 and in a way similar to
[6], we can express Jm as a function of uk:

Jm =
(

uHu
)2
+
(

uHΦ(τ)u
) (

uHΦ∗(τ)u
)

+

K
∑

k=1

|uk |4
(

κk(τ) − 1 − |ηk(τ)|2
)

− uTΓ(τ)u − uHΓ∗(τ)u∗ + 1, (21)

where u △
= [u1, · · · , uK]T , Φ(τ) △

= diag[η1(τ), · · · , ηK(τ)],
Γ(τ) △= diag[ρα1 (τ), · · · , ραK(τ)], and the normalized autocor-

relation function ηk(τ) △= m2k(τ)/m2k(0).
The gradient of Jm with respect to w is
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∂Jm

∂w∗
= AM

∂Jm

∂u
, (22)

where M △
= diag

[√
m21(0), · · · , √m2K(0)

]

. It is shown in
[6] that if assumption AS2 holds (i.e., the columns in A are
linearly independent), the stationary points of Jm correspond
to the point where the following gradient of Jm with respect
to u vanishes:

∂Jm

∂u∗
= 2
(

uHu
)

u +
(

uHΦ∗(τ)u
)

Φ(τ)u

+
(

uHΦ(τ)u
)

Φ∗(τ)u − 2Γ∗(τ)u∗

+2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

|u1|2u1α1(τ)
...

|uK |2uKαK(τ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0, (23)

where αi(τ)
△
= κi(τ) − 1 − |ηi(τ)|2. The stationary points can

be classified into four cases. In the following, we summa-
rize the properties of the stationary points. The details are
presented in the Appendix.

Case 1: All signals are canceled; i.e.,

uk = 0 ∀k. (24)

This is not a desirable solution. This point is always a saddle
point.

Case 2: A single signal si(t) with nonzero |ραi (τ)| is
extracted and the other signals are canceled; i.e.,

|ui| " 0, i ∈ A, uk = 0, ∀k " i. (25)

From (23), we have

|ui|2 =
|ραi (τ)|
κi(τ)

, arg(ui) = −
1
2

arg(mα2i(τ)). (26)

This is a desirable solution. A set of sufficient conditions for
the points to be minima is

κi(τ) <
|ραi (τ)|
|ραk (τ)|eki(τ), ∀k ∈ A, k " i, (27)

where

ei j(τ)
△
= 1 + Re{η∗i (τ)η j(τ)}. (28)

Case 3: A linear combination of signals from a setM
which consists of signals with nonzero |ραi (τ)| is extracted
and the other signals are canceled; i.e.,

ui " 0, i ∈M, uk = 0, k !M, M ⊆ A. (29)

From (23), we have

|ui|2 =
|ραi (τ)| − uHu − Re{(uHΦ∗(τ)u)ηi(τ)}

αi(τ)
,

arg(ui) = −
1
2

arg(mα21(τ)), ∀i ∈M. (30)

This is not a desirable solution. We can group all signals
which belong toM into two sets I+ and I− such that

I+ = { j : f j(τ) > 0}, I− = { j : f j(τ) < 0}, (31)

where

f j(τ)
△
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 +
∑

i∈M
di(τ)ei j(τ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

{

1 + dj(τ)e j j(τ)
}

, (32)

where di(τ)
△
= 1/αi(τ). Then, a sufficient condition for the

points to be saddle points is that there exists a signal j ∈ I+
such that
∑

i∈M
di(τ)ei j(τ)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

|ραi (τ)|
|ραj (τ)| − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

> 1, (33)

or there exists a signal j ∈ I− such that

∑

i∈M
di(τ)ei j(τ)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

|ραi (τ)|
|ραj (τ)| − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

< 1. (34)

Case 4: A linear combination of signals from a setM
which includes at least one signal with zero |ραi (τ)| is ex-
tracted and the other signals are canceled; i.e.,

ui " 0, i ∈M, uk = 0, k !M, M ∩ Ā " ∅. (35)

This is not a desirable solution. This point is always a saddle
point.

It is worth noting that the conditions derived above de-
pend on delay τ. For example, the conditions in (27) for the
points corresponding to single signal extraction to be min-
ima depend on τ, while the corresponding conditions in (12)
for the CF algorithm do not. The above analysis can be re-
garded as a generalization of that presented in [6] for cases
of non-zero τ. When τ = 0, the above results are basically
the same as those in [6]. A notable difference can be found
in a sufficient condition derived in Case 3 where the sign of
f j(τ) is taken into account.

If there is only one signal whose NCCA is nonzero,
Case 3 never occurs and the Hessian in Case 2 is always pos-
itive definite as explained in the Appendix. Consequently,
the signal is always extracted.

In the case where there are several signals whose
NCCA is nonzero, one of the signals satisfying the condi-
tions (27) can be extracted. The dependence of the condi-
tions on the delay τ implies that the delay is useful to prevent
the capture of undesired signals. In the next section, we will
show how the MCF algorithm deals with the capture prob-
lem when applied to CDMA systems.

The results shown in this section only demonstrate that
the MCF algorithm can be globally convergent in noiseless
multiuser channels. Nevertheless, as shown by the simula-
tion results in Sect. 6, the MCF algorithm also works well in
noisy multiuser channels.

As for a single-user AWGN channel, we have analyzed
the properties of the minima. This analysis proceeded in
a way similar to that in [6], where the case of τ = 0 was
analyzed. Although the details are not presented here, we
could prove that the MCF algorithm with τ " 0 can provide
the maximum SNR solution regardless of the initial array
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weights.
The conditions derived above depend only on statistics

ραk (τ), ηk(τ), and κk(τ) which are normalized by the signal
power m2k(0) or {m2k(0)}2. This implies that the property of
stationary points is independent of the amplitudes Ak.

4. Application to CDMA Systems

4.1 CDMA Systems

In DS/CDMA systems, several users transmit at the same
time and frequency band, but use distinct preassigned
spreading codes. When correlators are used for demodula-
tion, nonzero cross-correlation among the spreading codes
leads to multiple-access interference (MAI) which degrades
system performance. In practice, the spreading codes are
chosen so that the cross-correlations are very small, such
as with Gold codes. However, even if the cross-correlation
is small, when the amplitude of the desired signal is much
smaller than that of other signals (i.e., the near-far problem),
MAI leads to significant performance degradation. Adap-
tive beamforming is a promising technique to compensate
for MAI, since it can spatially separate the desired user’s
signal from other signals.

Let us consider BPSK/DS/CDMA systems. The trans-
mitted signal of the kth user is given in (7). The data {Ikn}
are independent and equally likely to be +1 or −1. For dif-
ferent users, the sequences are mutually independent. The
signature waveform of the kth user is given by

ak(t) =
Lk−1
∑

l=0

aklPTck (t − lTck), (36)

where akl ∈ {+1,−1}, l = 0, 1, · · · , Lk − 1 is a spreading code
of the kth user, Lk is the length of the spreading code, PTck (t)
is a rectangular chip waveform, PTck (t) = 1 for t ∈ [0, Tck]
and 0 for t ! [0, Tck], and Tck = Tk/Lk is the chip duration.
The signals {sk(t)} satisfy assumption AS1, and thus are cy-
clostationary with frequency α = 2 fck ± l/Tk, l = 0, 1, · · ·.

4.2 Sufficient Conditions

In this section, we show that the MCF algorithm always ex-
tracts a single signal in the noiseless BPSK/DS/CDMA sys-
tem under certain conditions.

We define the partial autocorrelation function as

φk(τ) △=
1
Tk

∫ Tk

τ
ak(t)ak(t − τ)dt. (37)

For convenience and without loss of generality, let signals in
A be renumbered in the order of decreasing |ραi (τ)| such that
|ρα1 (τ)| ≥ |ρα2 (τ)| ≥ · · · ≥ |ρα|A|(τ)|, and define the correspond-
ing set Ã = {1, 2, · · · , |A|}. The following lemma provides
a set of sufficient conditions for undesired stationary points,
corresponding to Case 3 in the previous section, to be saddle
points.

Lemma 1: The stationary points where a linear combina-
tion of signals in Ã is extracted are saddle points if

C1) φ2
i (τ) < 1 + φi(τ)φ j(τ), ∀i, j ∈ Ã, (38)

C2)
|ραi (τ)|
|ραi+1(τ)| >

1 + φi(τ)φi+1(τ)
1 + φi(τ)φi+1(τ) − φ2

i (τ)
,

i = 1, 2, · · · , |Ã| − 1. (39)

Proof: Since |sk(t)|2 = A2
k , we have

m2k(0) =
〈

|sk(t)|2
〉

= A2
k (40)

m4k(τ) =
〈

|sk(t)|2|sk(t − τ)|2
〉

= A4
k . (41)

Taking into account the independent hypothesis on {Ikm}, we
get m2k(τ) = A2

kφk(τ)ei2π fckτ, and therefore

ηk(τ) = φk(τ)ei2π fckτ. (42)

Since κk(τ) = 1, we have αk(τ) = −φ2
k(τ), and thus

dk(τ) = −1/φ2
k(τ). (43)

LetM be a subset of Ã. From (42) and (43), we have

1 +
∑

i∈M
di(τ)

(

1 + Re{η∗i (τ)η j(τ)}
)

= 1 −
∑

i∈M

1 + φi(τ)φ j(τ)

φ2
i (τ)

, j ∈M. (44)

If each term of the sum is greater than one, (44) is negative
for a given set M. Thus, a set of sufficient conditions for
(44) to be negative for any setM is

1 + φi(τ)φ j(τ)

φ2
i (τ)

> 1, ∀i, j ∈ Ã. (45)

Then, since

1 + dk(τ)(1 + |ηk(τ)|2) = − 1
φ2

k(τ)
< 0, (46)

f j(τ) is positive for any setM and all j ∈ M. This implies
M = I+.

The next step is to derive sufficient conditions for (33).
Given a setM and j ∈M, the inequality in (33) holds if

di(τ)ei j(τ)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

|ραi (τ)|
|ραj (τ)| − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

> 1, ∀i ∈M. (47)

Since di(τ) = −1/φ2
i (τ) < 0 and ei j(τ) = 1 + φi(τ)φ j(τ) > 0,

they can be rewritten as

|ραi (τ)|
|ραj (τ)| − 1 <

−φ2
i (τ)

1 + φi(τ)φ j(τ)
, ∀i ∈M. (48)

Clearly, a set of sufficient conditions for (48) to be satisfied
for any setM is

|ραi+1(τ)|
|ραi (τ)| − 1 <

−φ2
i (τ)

1 + φi(τ)φi+1(τ)
(49)
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for i = 1, 2, · · · , |Ã| − 1. !
A set of conditions C1 is easily satisfied when long

length spreading codes are employed because their autocor-
relation functions φi(τ) take very small values compared to
one. As for C2, roughly speaking, when the values of φi(τ)
are negligible, these conditions can be rewritten as

|ραi (τ)| > |ραi+1(τ)|, i = 1, · · · , |Ã| − 1. (50)

This requires that the NCCAs differ from each other. As
shown in the next section, this can be accomplished by
choosing α and τ carefully.

The following theorem provides a set of sufficient con-
ditions for the desired points to be minima.

Theorem 2: Suppose that conditions C1 and C2 are satis-
fied. The minima of the MCF cost function correspond to
the points where a single signal si(t), i ∈ A, is extracted if

C3) κi(τ) <
|ραi (τ)|
|ραk (τ)| (1 + φi(τ)φk(τ)) ,

∀k ∈ A, k " i. (51)

Proof: From Lemma 1, C1 and C2 ensure that the sta-
tionary points where a linear combination of signals is ex-
tracted are saddle points. It is clear from the discussion
in 3.2 that all other undesired stationary points are saddle
points. Substituting eki(τ) = 1 + φk(τ)φi(τ) into (27), we get
(51). Clearly, they are sufficient to ensure that the desired
points are minima. !

Conditions C3 can be satisfied for only the desired sig-
nal s1(t), if we choose α and τ such that the NCCA of the
desired signal |ρα1 (τ)| is significantly larger than that of the
other signals.

To extract only the desired signal, delay τmust be cho-
sen so as to satisfy conditions C1 and C2 for all signals
and C3 for only the desired signal. To evaluate these con-
ditions, statistics of all signals should be known. If some
of the statistics are unknown, the delay cannot always be
chosen properly. When a wrong delay is used, either an un-
desired signal or a linear combination of signals is extracted.
A strategy to deal with this situation would be to choose τ
such that |ραi (τ)| of the desired signal is sufficiently large.

In the above analysis, no synchronization between
users is assumed. Thus, the MCF algorithm can be ap-
plied to both synchronous and asynchronous CDMA sys-
tems with no modification. Both synchronous and asyn-
chronous CDMA systems are considered in our simulation.

The proposed technique does not need symbol timing
synchronization between the transmitter and receiver, unlike
conventional blind beamformers for CDMA systems [11].
The synchronization can be carried out after the beamform-
ing. Since the signal after beamforming contains only a
small MAI component, simple synchronization techniques
such as DLL can be successfully used.

5. Simulation Results

Computer simulations were carried out to show that the pro-

posed MCF algorithm can extract the desired signal by ap-
propriately choosing the delay. The performance of the pro-
posed algorithm was compared with that of the CF algo-
rithm [6] and SCORE algorithm [4] implemented with a
gradient algorithm. In our simulation examples, we con-
sidered a uniform five-element array with half-wavelength
spacing. BPSK/DS/CDMA systems using signature wave-
forms in (36) were considered. Gold sequences were used
as the spreading codes. The length of the desired user’s code
was 31. All signals had the same chip rate, 1/Tc. The re-
ceived signals were sampled at a rate five times faster than
the chip rate. We set our initial array weights to zero except
w1. The received SNR was fixed at 20 dB. The normalized
carrier frequency and amplitude of the desired signal were
fc1 = 0.1 and A1 = 1. The desired signal arrived at the
array from angle θ1 = 30◦. The performance measure was
the output signal to the interference and noise ratio (SINR)
obtained by averaging over 10 trials as

SINR =
1
10

10
∑

i=1

|A1wH
i a(θ1)|2

wH
i

(

∑

j"1 A2
j a(θ j)aH(θ j) + σ2I

)

wi

,

where wi is the weight vector of the ith trial and σ2 is the
noise power. Channels were assumed to be time-invariant.
We did not consider multipath channels. The control vector
of the SCORE algorithm was c = [1, 0, · · · , 0]T . The step
size µm of the MCF algorithm was large enough to converge,
and that of the SCORE and CF algorithms was chosen such
that their convergence rate became almost the same as that
with the MCF algorithm. Frequency parameter α and delay
parameter τ of the MCF algorithm were chosen so as to sat-
isfy conditions C1 and C2 for all signals and C3 for only the
desired signal, and the same parameters were used for the
SCORE algorithm. Unless otherwise stated, the frequency
parameter of the CF algorithm was the same as that of the
MCF algorithm.

5.1 Examples of Normalized Conjugate Cyclic Autocor-
relation Function

First, we examined the NCCA function of signals to deter-
mine α and τ satisfying C1, C2, and C3. Figure 1 shows
the magnitude of the NCCA function for three signals em-
ploying the Gold code of length 31 when cycle frequencies
were chosen as α = 2 fc1 and 2 fc1 + 1/T1. Note that when
α = 2 fc1, the NCCA function was identical to the partial
autocorrelation function: ραi (τ) = φi(τ). The results clearly
show that when α = 2 fc1, the autocorrelation functions take
values smaller than one if τ " 0. Actually, we could confirm
that these signals satisfy condition C1 for all τ " 0. We also
observed that although three NCCAs were the same when
τ = 0, they differed from each other and one of them was
significantly larger than the others at a certain delay when
τ " 0. Actually, we found several delays satisfying condi-
tions C2 and C3.
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Fig. 1 Magnitude of normalized conjugate cyclic autocorrelation
function for α = 2 fc1 and 2 fc1 + 1/T1.

5.2 Single-User AWGN Channel

In the first example, a single-user AWGN channel was con-
sidered to show that all three algorithms can provide the
maximum SNR solution. The frequency and delay param-
eters were chosen as α = 2 fc1 and τ = 0.071T1. The step
sizes for the MCF, CF, and SCORE algorithms were chosen
as µm = 10−3, µc = 10−3, and µs = 5 × 10−5, respectively.
The evolutions of the output SINR and the final radiation
patterns for the three algorithms are shown in Fig. 2. The
theoretically achievable SNR was 27 dB. As expected, all
algorithms successfully achieved the maximum SNR.

5.3 Extraction of a Signal with a Distinct Cycle Frequency

In the second example, we considered a three-user syn-
chronous CDMA system where a cycle frequency of the de-
sired signal is distinct from that of the other signals. The
carrier frequency of the desired signal was fc1 = 0.1, and
that of two other signals was fc2 = fc3 = 0.12. The fre-
quency and delay parameters were chosen as α = 2 fc1 and
τ = 0.013T1. The two interfering signals arrived at the an-
tennae from angles θ2 = −45◦ and θ3 = 0◦. All signals had
the same code length and signal amplitude. The step size of

Fig. 2 Time evolution of the SINR and radiation pattern with the
SCORE, CF, and MCF algorithms in a single-user channel.

all algorithms was 10−4. Figure 3 shows the time evolution
of the SINR and the final radiation patterns. In this case,
since the desired signal is the only signal which is cyclo-
stationary with α, we expected the three algorithms to work
well. As expected, all algorithms could extract the desired
signal and suppress other signals.

5.4 Extraction of a Signal with a Common Cycle Fre-
quency

In the third example, we considered a three-user dual-rate
synchronous CDMA system to show that the MCF algo-
rithm can extract the desired signal even in the presence
of an interfering signal with the same cycle frequency as
the desired signal. The symbol rate of the desired and sec-
ond signal was T1 = T2 = 31Tc. The third signal used a
Gold code of length 15, thus its symbol rate was T3 = 15Tc.
Two interfering signals arrived at the antennae from angles
θ2 = −45◦ and θ3 = 60◦. All signals had the same carrier
frequency and signal amplitude. The frequency and delay
parameters of the MCF and SCORE algorithm were chosen
as α = 2 fc1 + 1/T1 and τ = 0.2T1. Since NCCA |ρ f

i (0)| = 0
at f = 2 fc1 + 1/T1, the frequency parameter of the CF algo-
rithm was set to α = 2 fc1. The time evolution of the SINR
and final antenna pattern are depicted in Fig. 4 where step
sizes were µm = 2 × 10−5, µc = 2 × 10−5, and µs = 10−6.
The CF algorithm captured the second signal which was cy-
clostationary at 2 fc1 and suppressed the desired signal. The
SCORE algorithm could suppress the third signal which had
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Fig. 3 Time evolution of the SINR and radiation pattern with the
SCORE, CF, and MCF algorithms when the first signal has a distinct cycle
frequency.

Fig. 4 Time evolution of the SINR and radiation pattern with the
SCORE, CF, and MCF algorithms in the presence of an interfering signal
with a common cycle frequency.

Fig. 5 Effect of delay choice on time evolution of the SINR and radia-
tion pattern with the MCF algorithm when all signals have the same cycle
frequency.

zero NCCA at α = 2 fc1 + 1/T1, but could not suppress the
second signal. The MCF algorithm extracted the desired
signal and successfully suppressed the interfering signals.

5.5 Signal Selectivity Based on Delay

In the fourth example, we considered a three-user syn-
chronous CDMA system where all signals have the same
cycle frequency to show how the choice of the delay af-
fects the behavior of the MCF algorithm. All signals had
the same carrier frequency, code length, and amplitude. The
frequency parameter and step size were chosen as α = 2 fc1
and µm = 10−4, respectively. The angles of arrival were the
same as in the second example. In Fig. 5, the time evolution
of the SINR and the final radiation patterns in the cases of
τ = 0.077T1, 0.336T1, and 0.742T1 are shown, where the
SINR was computed by treating s2(t) as the desired signal
instead of s1(t) in the case of τ = 0.336T1, as s3(t) was in
the case of τ = 0.742T1. As is clearly shown, the MCF
beamformer can be used to extract any signal by choosing
an appropriate delay.

5.6 Near-Far Situation

In the fifth example, we considered a three-user syn-
chronous CDMA system with a near-far problem to show
that the MCF algorithm works well even if strong inter-
ference exists. The amplitudes of the second and third
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Fig. 6 Time evolution of the SINR and radiation pattern with the
SCORE, CF, and MCF algorithms in the presence of two strong interfering
signals.

signals were ten times as large as that of the desired sig-
nal. The chosen frequency parameter, delay parameter, and
step sizes were, respectively, α = 2 fc1, τ = 0.077T1, and
µm = 10−5, µc = 10−5, µs = 10−6. The other parameters
were the same as in the previous example. Figure 6 shows
the evolution of the SINR and final antenna pattern. The
CF algorithm captured the second signal and could not ex-
tract the desired signal, whereas the two other algorithms
extracted the desired signal. However, the achievable SINR
with the SCORE algorithm was lower than that with the
MCF algorithm because the SCORE could not sufficiently
suppress the strong interference.

5.7 Five-User Asynchronous CDMA System

In the sixth example, we considered a five-user asyn-
chronous CDMA system to show that the MCF algorithm
works well in the presence of many signals in an asyn-
chronous system. The chosen cycle frequency, delay, and
step sizes were, respectively, α = 2 fc1, τ = 0.077T1, and
µm = 10−5, µc = 10−5, µs = 2 × 10−7. The undesired signals
came from θ2 = −45◦, θ3 = 0◦, θ4 = 60◦, and θ5 = −20◦. All
signals had the same carrier frequency, code length, and sig-
nal amplitude. In Fig. 7, the time evolution of the SINR and
the final radiation pattern are shown. The CF algorithm cap-
tured the third signal, whereas the SCORE algorithm could
not sufficiently suppress the undesired signals. It is clear that

Fig. 7 Time evolution of the SINR and radiation pattern with the
SCORE, CF, and MCF algorithms in a five-user asynchronous CDMA sys-
tem.

Fig. 8 Radiation pattern with the MCF algorithm with wrong choices for
τ.

the MCF algorithm can extract the desired signal and sup-
press the interfering signals even in an asynchronous sys-
tem.

5.8 Effect of Wrong Delay Choices

Finally, we show examples of a wrong choice for the de-
lay. Figure 8 shows the radiation pattern where all param-
eters except the delay are the same as in Fig. 4. In both
curves, the third signal, which has zero NCCA at α, was sup-
pressed. However, an undesired signal was extracted when
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τ = 0.077T1 and a combination of the first and second sig-
nal was extracted when τ = 0.800T1. These results verify
the analytical results given in Sect. 4.

From the results presented in this section, we conclude
that the CF algorithm, which does not use the delay, has a
limited capability for extracting the desired signal, while the
exploitation of the non-zero delay improves the capability.

Since the main purpose of our simulation was to show
how the MCF algorithm avoids the capture problem, the step
size, α and τ were not optimized to obtain the fastest possi-
ble convergence. According to our preliminary experiments,
the MCF algorithm tends to show slower convergence than
the other algorithms. This slow convergence may be due to
the small magnitude of the NCCA upon which the MCF al-
gorithm relies. In fast varying channels, slow convergence
leads to serious performance degradation, so improved con-
vergence speed is required. While recursive least-squares
type algorithms [5] could provide faster convergence, this
would lead to greater computational complexity. This issue
will need to be further considered in the future.

6. Conclusion

We have described a simple adaptive beamforming tech-
nique based on higher-order statistics regarding cyclosta-
tionary signals. The proposed method exploits the delay as
well as cycle frequency. This greatly reduces the possibility
of capturing undesired signals. We derived a set of con-
ditions which ensure that the MCF algorithm in noiseless
multiuser systems extracts only a single signal. Moreover,
we showed that these conditions can be satisfied in CDMA
system applications and the desired signal successfully ex-
tracted.

The proposed method replaces the zero-delay product
in the CF algorithm [6] with a delay product. Further gen-
eralization is possible by replacing it with a linear combina-
tion of delay products. This generalization may improve the
convergence speed and reduce the capture problem. Further
comprehensive analysis will be the subject of our ongoing
work.

Though we did not consider multipath propagation sit-
uations since such an analysis would be very complicated,
the performance of the proposed algorithm in multipath
channels will be considered in the future.
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Appendix: Evaluation of the Hessian

To examine the stationary points of the cost function, first
of all, we determine stationary points where the gradient of
the cost function becomes zero. Then, we examine whether
these points are minima by evaluating the positive definite-
ness of the Hessian at the point, which is defined by

HwJm
△
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂
∂w
(

∂Jm
∂w∗

)T ∂
∂w
(

∂Jm
∂w
)T

∂
∂w∗

(

∂Jm
∂w∗

)T ∂
∂w∗

(

∂Jm
∂w
)T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

EwJm SwJm

S∗wJm E∗wJm

]

. (A· 1)

Let C △
= AM. Then, the Hessian with respect to w can

be written as

HwJm =

[

C∗ 0
0 C

]

HT
uJm

[

CT 0
0 CH

]

. (A· 2)

HuJm has the same positive definiteness as HwJm since they
are congruent matrices [12]. The matrices EuJm and S∗uJm

in the Hessian become

EuJm = 2(uHu)I + 2u∗uT

+
(

uHΦ∗(τ)u
)

Φ(τ) +Φ∗(τ)u∗uTΦ(τ)

+
(

uHΦ(τ)u
)

Φ∗(τ) +Φ(τ)u∗uTΦ∗(τ)

+ 4diag
[

|u1|2α1(τ), · · · , |uK |2αK(τ)
]

, (A· 3)

S∗uJm = 2uuT +Φ∗(τ)uuTΦ(τ)
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+Φ(τ)uuTΦ∗(τ) − 2Γ∗(τ)
+ 2diag

[

u2
1α1(τ), · · · , u2

KαK(τ)
]

. (A· 4)

Now, we evaluate the Hessian for the four cases.
Case 1: All signals are canceled; i.e., uk = 0,∀k. Then,

the Hessian becomes

HuJm =

[

0 −2Γ(τ)
−2Γ∗(τ) 0

]

. (A· 5)

Clearly, this matrix is indefinite and therefore this point is a
saddle point.

Case 2: A single signal si(t) in A is extracted and the
other signals are canceled; i.e., |ui| " 0, i ∈ A, uk = 0,∀k "
i. The nonzero responses ui are given in (26). Then, we
obtain

EuJm = |ui|2diag [2e1i, · · · , 4κi(τ), · · · , 2eKi] , (A· 6)

S∗uJm = −2diag
[(

ρα1 (τ)
)∗
, · · · ,

(

ραi (τ)
)∗ − κi(τ)u2

i ,

· · · , (ραK(τ)
)∗] . (A· 7)

Using a permutation matrix P, the Hessian HuJm can be
transformed into another matrix QuJm = PHHuJmP with
a block-diagonal structure, whose ith second-order square
submatrix consists of the ith diagonal entries of EuJm and
SuJm:

∆i =

[

2κi(τ)|ui|2 (u∗i )2κi(τ) − ραi (τ)
u2

i κi(τ) −
(

ραi (τ)
)∗

2κi(τ)|ui|2
]

(A· 8)

and the k(" i)-th submatrices are

∆k =

[ |ui|2eki(τ) −ραk (τ)
−
(

ραk (τ)
)∗ |ui|2eki(τ)

]

, k " i. (A· 9)

The matrix QuJm has the same positive definiteness as
HuJm since they are congruent matrices.

The determinant of a block-diagonal matrix is the
product of the determinants of the submatrices [13]; e.g.,
|QwJm| = ΠK

i=1|∆i|. The next step is to evaluate the deter-
minant sign of the above submatrices. Since κi(τ) > 0, the
(1, 1) entry of ∆i is positive. The determinant of ∆i becomes

|∆i| = 4|ραi (τ)|2, (A· 10)

and this is positive because si(t) is assumed to have nonzero
NCCA. As for ∆k, if τ = 0, the (1, 1) entry is positive since
ηi(0) = 1, thus ei j(0) = 1 + Re{η∗i (0)η j(0)} = 2. Moreover,
even if τ " 0, this is positive because |ηi(τ)| < 1 and thus
ei j(τ) > 0. In the case of k ∈ Ā, since ραk (τ) = 0, |∆k | =
|ui|4e2

ki(τ) > 0. In the case of k ∈ A, |∆k | is positive if and
only if

κi(τ) <
|ραi (τ)|
|ραk (τ)|eki(τ). (A· 11)

Consequently, if there is one signal inA, this point is always
a minimum. If there are several signals inA, the conditions
in (27) are sufficient for this point to be a minimum.

Case 3: A linear combination of signals from a set

M which consists of signals in A is extracted and the rest
of the signals are canceled; i.e., ui " 0, i ∈ M, uk =
0, k ! M, M ⊆ A. The nonzero responses ui are given
in (30). For a signal j ∈M, using a permutation matrix P j,
the Hessian HuJm can be transformed into another matrix
QuJm = P jHuJmP j whose first second-order submatrix can
be written as

∆1 =

[

(∆1)11 (∆1)12
(∆1)21 (∆1)22

]

(A· 12)

where

(∆1)11 = 2∥u∥2 + 2|uj|2
(

1 + |η j(τ)|2 + 2α j(τ)
)

+ 2Re{(uHΦ∗(τ)u)η j(τ)} = (∆1)22,

(∆1)12 = 2(u∗j)
2
(

1 + |η j(τ)|2 + α j(τ)
)

− 2ραj (τ)

= ((∆1)21)∗.

The matrices HuJm and QuJm have the same positive defi-
niteness since they are congruent matrices. Thus, it is suffi-
cient to show that the sign of (∆1)11 differs from that of |∆1|
for HuJm to be indefinite.

Since ei j(τ) > 0 and κ j(τ) > 0, the (1, 1) entry is always
positive

(∆1)11 = 2
∑

i∈M
i" j

|ui|2ei j(τ) + 4|uj|2κ j(τ) > 0. (A· 13)

The determinant of ∆1 becomes

|∆1| = 16|ραj (τ)|
[

|ραj (τ) − ∥u∥2 + |uj|2e j j(τ)

−Re{(uHΦ∗(τ)u)η j(τ)}
]

. (A· 14)

Substituting the following relation into (A· 14),

∥u∥2 + Re{(uHΦ∗(τ)u)η j(τ)}

=

∑

i∈M di(τ)|ραi (τ)|ei j(τ)

1 +
∑

i∈M di(τ)ei j(τ)
, (A· 15)

where di(τ) = 1/αi(τ), we can show that the determinant of
∆1 is negative if and only if

|ρ j(τ)| <
∑

i∈M di(τ)|ραi (τ)|ei j(τ)
1 +
∑

i∈M di(τ)ei j(τ)

·
(

1 + dj(τ)e j j(τ)
)

− dj(τ)|ραj (τ)|e j j(τ). (A· 16)

When {1 + ∑i∈M di(τ)ei j(τ)}{1 + dj(τ)e j j(τ)} > 0 (in other
words, j ∈ I+), the condition results in

∑

i∈M
di(τ)ei j(τ)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

|ραi (τ)|
|ραj (τ)| − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

> 1, (A· 17)

otherwise (i.e., if j ∈ I−),

∑

i∈M
di(τ)ei j(τ)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

|ραi (τ)|
|ραj (τ)| − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

< 1. (A· 18)

Consequently, if there exists j ∈ I+ such that condition
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(A· 17) is satisfied or there exists j ∈ I− such that condi-
tion (A· 18) is satisfied, this point is a saddle point.

Case 4: A linear combination of signals from a setM
which includes at least one signal from Ā is extracted and
the rest of the signals are canceled; i.e., ui " 0, i ∈M, uk =
0, k ! M, M ∩ Ā " ∅. As in the previous case, the first
second-order submatrix of the transformed Hessian is given
in (A· 12). From (A· 13), the (1,1) entry of the matrix is
positive. If we choose P j such that j ∈ Ā, |ραj (τ)| = 0, and
thus the determinant of ∆1 becomes zero. Consequently, the
Hessian is indefinite, and thus this point is always a saddle
point.
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