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[LETTER

Differential Constant Modulus Algorithm for Anchored
Blind Equalization of AR Channels

SUMMARY A blind equalizer which uses the differential
constant modulus algorithm (DCMA) is introduced. An an-
chored FIR equalizer applied to a first-order autoregressive chan-
nel and updated according to the DCMA is shown to converge
to the inverse of that channel regardless of the initial tap-weights
and the gain along the direct path.

key words: blind signal processing, adaptive equalizer, CMA,
stability analysis

1. Introduction

In the field of digital communications, considerable in-
terest has been directed towards blind adaptive equal-
izers that are capable of eliminating the effects of in-
tersymbol interference (ISI) without requiring train-
ing sequences [1]. Although fractionally spaced blind
equalizers are attractive because of their global conver-
gent property, blind equalizers with inputs sampled at
baud-rate remain useful and practical for communica-
tion channels that lack excess bandwidth [2]. In this
letter, we focus on the blind equalization of autoregres-
sive (AR) channels by FIR filters with inputs sampled
at baud-rate because it can achieve the perfect equal-
ization [3]-[5]. Anchored FIR equalizers are attractive
due to their simplicity [3], [4]. Verdi et al. [3] have pro-
posed the use of the output energy as a cost function for
anchored equalizers. The anchored equalizer is able to
exhibit global convergence when applied to AR chan-
nels. However, applying a stochastic gradient method
to achieve fast tracking produces a strong fluctuation
of tap-weights around the desired point. This results in
degradation of the system’s performance in terms of bit
error rate. Kamel et al. [4] have proposed an anchored
equalizer in which the CMA is applied. The fluctua-
tions of this equalizer’s tap-weights are relatively small.
However, the equalizer is only able to exhibit global
convergence in application to AR channels in which the
gain along the direct path is greater than a certain crit-
ical value. In this letter, we consider the application of
the DCMA [6] to the blind equalization problem as a
way of overcoming the above-mentioned disadvantages
of conventional equalizers.
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2. Problem Statement

Assume that the information data sequence {zy} con-
sists of i.i.d. random variables chosen from the QPSK
constellation with |zj| = 1. We assume, moreover, that
there is no phase offset. The received signal through an
Nth-order AR channel is sampled every T3, which is the
symbol period:

N
ry = Gxp + Zaﬂ“kﬂ' (1)

i=1

where G is an arbitrary gain along the direct path and
a; are the AR parameters. Note that the magnitude of
a; is assumed to be less than unity. In our analysis, we
assume that the level of noise on the channel is negli-
gible. To recover xj from the received signal r; that
has been corrupted by ISI, the received signal is passed
through an FIR equalizer with output written as

M
Yr = wark—i (2)
i=0

where w; are the tap-weights, M + 1 is the number
of tap-weights and asterisk denotes complex conjugate.
In an anchored equalizer [3], [4], in order to prevent the
situation where the output of the equalizer is always
zero, the first tap-weight of the equalizer is fixed to
unity, wg = 1. Although the non-anchored equalizers
using the well known CMA are not globally convergent
for arbitrary initialization [7], the anchored equalizers
can be globally convergent. It is clear that, if M = N
and w; = —a;,% = 1,---, M, the anchored equalizer
can recover the transmitted symbol, i.e. yr = Gxg. In
the following description, M is assumed to be equal to
N.

3. DCMA Blind Equalizer
The DCMA operates in such a way as to make the

magnitudes of successive equalizer outputs equal. The
DCMA cost function is given by

Ttw) = 1B (Il ~ lys-PP] 3)

where w = (wy,---,wy)?. If the magnitude of the
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equalizer outputs becomes constant such that |yz|? =
|yx—1/|?, the cost function is minimized. Note that when
IS is canceled, |y | = |yr—1/|>.

We examine the shape of the cost function. Con-
sider a first-order AR channel with a; # 0. For simplic-
ity of analysis, we introduce a variable u* = w} + a1
instead of wy. The stationary points of J(u) corre-
sponds to those of J(wy) because the stationary points
are the points where the gradient vanishes. Thus, we
consider the stability of the stationary points of J(u).
Taking into account the i.i.d. hypothesis on x; and the
relationship |x1|? = 1, the gradient of the DCMA cost
function is given by

9J (u) GI*
ou* 1—ay

(2u*ai +uar) + 4(1 + |a1]?) } u. (4)

1
= T o (Bl =0+ )

It is possible to show that the inside of the braces is
nonzero if |a;| < 1. Thus, the gradient is zeroed if and
only if u = 0, i.e., wf = —ay, by which ISI is completely
canceled. The Hessian matrix at u = 0 is given by

8% J(u)

8%J(u)
iy S 1
ou*ou* ou*ou
G Jar?)
1—Jay[?

Q(0) =

u=0

I (5)

The Hessian matrix can also be shown to be positive
definite if |a;] < 1. Consequently, the cost function
is convex. There are no undesired minima except the
desired solution. ISI can thus be canceled if the cost
function is minimized.

From (3), the stochastic gradient algorithm takes
the form

k+1 k
o™ = wf® = (g = g1 )
(YRTh—i — Yp—1Tk—1-1) (6)
where i+ = 1,---, N and p is the step-size parameter.

When the weights approach the desired solution, it is
reasonable to expect that the difference |yx|? — |yx—1|?
will be very small since both |y |? and |y_1|? approach
|G|?. As aresult, we would expect very little fluctuation
in the values of weights.

4. Simulation Results

The DCMA equalizer was compared with two conven-
tional anchored equalizers using the minimum energy
algorithm (MEA) [3] and CMA [4]. The data was cho-
sen from the QPSK constellation. In this simulation,
initial weights were set be zero except for w(()o) = 1.
For the DCMA, the step-size was selected to provide
the best performance in terms of bit error rate after
100 iterations when FEj/No=10dB, E}, is the signal en-
ergy per bit and Ny is the PSD of the channel noise
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Fig.1 ISR against number of iterations.

which corrupts ri. The step-sizes for the other algo-
rithms were chosen so that all of the algorithms would
converge at almost the same rate.

In the first experiment, the channel was a first-
order AR system with a; = 0.6. Figure 1 is a plot
of the time evolution of the interference-to-signal ratio
(ISR) when E;/Ny =10dB, and G = 0.5 and 10. ISR
is defined as
* — max; |g;|*

10
1SR — =019 ; (7)

max; |g;

where g; = Ezj\io wih;—; and {h;} is the impulse re-
sponse of the channel. That the CMA fails to suppress
ISI when G = 0.5, as has previously been reported [4],
is clearly visible. On the other hand, the DCMA is
shown to work well. This observation supports the an-
alytical result presented in the previous section. More-
over, we are able to see that the ISR of the DCMA
is lower than that of the MEA. We infer that this is
due to the fluctuation of weights around the desired
point. Figure 2 shows the variance in the weights. The
variance in the weights is clearly lower for the DCMA
than for the other algorithms. Although it is possible
to reduce the variance in the weights of the MEA by
using a smaller step-size, using small step-sizes is not
possible when fast tracking is desired. Figure 3 shows
bit error rate performance for G = 0.5 and 10. The
DCMA outperforms the other algorithms even in the
noisy channels because of the smaller fluctuation in its
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Fig.4 ISR by DCMA for second-order AR channels: (a) a1 =
0,az2 = 0.25, (b) a1 = 0.2, a2 = 0.35, (c) a1 = —0.4,az = 0.4.

weights.

So far, there have been many non-anchored CMA
equalizers. As an example, a modified CMA (MCMA)
recently proposed in [8] is considered. In Fig.1, the
ISR by the MCMA are shown. As for the parameters
of the MCMA, we chose the step-size and weighting
factor which provide the smallest ISR at 200 iterations.
It can be observed that the convergence rate of the
MCMA is relatively slow. Although the MCMA works
well in this example, it should be noted that it is not
clear whether the MCMA always converges regardless
of the initial tap-weights or not.

In the second experiment, we considered three
types of second-order AR channels. The parameters
of the channels were (i) a1 = 0.2,a2 = 0.35, (ii)
a; = 0.0,a2 = 0.25 and (iii) a3 = 0.4,a2 = —0.4. The
ISR performances of the DCMA when G=10 are shown
in Fig.4 when E,/Ny = 10dB. Although the perfect
equalization has not been guaranteed theoretically, we
can expect from the results that the perfect equaliza-
tion can be achieved by the DCMA.

5. Conclusion

The application of the DCMA to a blind adaptive
equalizer for AR channels has been considered. The
DCMA-based anchored FIR equalizer has been shown,
for a first-order AR channel, to completely suppress IST
regardless of the gain along the direct path and the ini-
tial weights. The results of simulation have shown that
the DCMA equalizer outperforms conventional equal-
izers.
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