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LETTER

A Phasor Model with Resting States

Teruyuki MIYAJIMA†, Member, Fumihito BAISHO††, Kazuo YAMANAKA†, Nonmembers,
Kazuhiko NAKAMURA††, and Masahiro AGU†††, Members

SUMMARY A new phasor model of neural networks is pro-
posed in which the state of each neuron possibly takes the value
at the origin as well as on the unit circle. A stability property of
equilibria is studied in association with the energy landscape. It
is shown that a simple condition guarantees an equilibrium to be
asymptotically stable.
key words: neural networks, associative memory, complex-
valued neuron, stability analysis, Lyapunov theory

1. Introduction

In some recently proposed neural network models the
state of each neuron takes the value on the unit circle
on the complex plane [1]–[6]. A complex-value on the
unit circle can be considered as a phase of pulse se-
quences from a firing neuron. Thus, the network model
with local state (state of a neuron) on the unit circle is
called phasor model. On the other hand, neurons are
allowed to have the resting state “0” as well as the fir-
ing state “1” in the binary networks proposed earlier,
e.g. [7]. This observation makes us recognize the lack
of the resting states in phasor models. A method for
introducing the resting states is to enable neurons to
take the value at the origin as well as on the unit circle.
This leads to a new model with complex states, which
we discuss in this paper. The model considered here
will be referred to as phasor model with resting states.
The phasor model with resting states has more capa-
bility for processing information, for example, smooth
curves can be displayed on a two-dimensional array of
phasors with resting state.

One major application of neural networks is asso-
ciative memory in which an equilibrium corresponds to
a memory. A symmetrically connected phasor model
has equilibria of the global neural state as in the well
known binary Hopfield model [7]. However, an equilib-
rium is useful as a memory only if it is stable. Agu
et al.[5] studied a stability property of equilibria in
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terms of the energy landscape of the phasor model,
and showed a relation between the neural connection
and stability of an equilibrium. It is not straightfor-
ward to claim a similar result for the phasor model with
resting states because this model has a quite different
property from the phasor model, e.g. the energy for the
global state change does not always decrease unlike the
phasor model. In this letter, we introduce a particular
notion of neighborhood that enables us to consider the
local behavior of the network in a manner similar to the
previous paper [5]. Furthermore, we obtain a stronger
result on stability.

2. Updating Rule

Consider a neural network with N neurons. The local
state (output) of the jth neuron is denoted by xj . A
local state is allowed to be either at the origin, xj = 0,
or on the unit circle, xj = exp(iφj), where φj denotes
the argument of xj .

A local state is assumed to be asynchronously up-
dated based only on its membrane potential. The mem-
brane potential of the jth neuron is given by

uj =
N

∑

i=1

wjixi (1)

where wji represents the complex-valued connection
weight between the jth and ith neuron. It is assumed
that the hermitian property wji = w∗

ij holds where (·)∗
stands for the complex conjugate. wjj = 0 is not as-
sumed. Thus, the following results hold for wjj = 0.
When a neuron is updated the new local state is deter-
mined by the following rule:

xj =

{

exp(iφj), φj
△= arg(uj) (|uj | ≥ c)

0 (|uj | < c)
(2)

where c > 0 is a given threshold. Figure 1 illustrates
the relation between the destination of the state and
the membrane potential of a neuron. To summarize
the updating rule, we can state as follows: if the mag-
nitude of the membrane potential is smaller than the
threshold, let the local state be at the origin; otherwise,
let the local state be on the unit circle with the same
argument as the membrane potential.
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(a) |uj | ≥ c (b) |uj | < c

Fig. 1 Updated state.

3. Stability Analysis

In order to discuss a stability property along Lya-
punov’s method, let us consider an energy function.
The energy function is defined by

U(x) △= −1
2

N
∑

j=1

N
∑

i=1

x∗
jwjixi (3)

where x △= (x1 x2 · · · xN ) denotes a global state.
The energy decreases monotonically as the global state
changes in the phasor model without resting states [5].
Let us consider the energy change for the global state
changes in the phasor model with resting states. Sup-
pose the jth neuron change its state. Denote the state
before and after the transition by x = (x1 · · ·xj · · ·xN )
and x′ = (x1 · · ·x′

j · · ·xN ), respectively. Then, the
change of the energy is given by

∆U = Re(u∗
jxj)−Re(u∗

jx
′
j)−

wjj

2
(|xj |2− |x′

j |2).(4)

Thus the energy does not necessarily decrease due to
the possible local-state transition between the unit cir-
cle and the origin. However, the energy function can
play a similar role as long as local properties are con-
sidered as described below.

Consider an equilibrium x̄ = (x̄1 x̄2 · · · x̄N ) =
(exp(iφ̄1) exp(iφ̄2) · · · exp(iφ̄N )). Let the set of in-
dices of the local states on the unit circle be denoted
by I, i.e.,

I
△= {j| |x̄j | = 1}

and the number of these neurons by |I|. We assume
0 < c < minj∈I |ūj| where ūj is jth neuron’s membrane
potential at x̄. This assumption is needed for x̄ to
be an equilibrium. Define δ-neighborhood of a state
x0 = (x01 · · ·x0N ) as

Ω △= {x| xj = 0, j /∈ I and
| arg(xj) − arg(x0j)| < δ, j ∈ I}

for arbitrary real number δ > 0. That is, the δ-
neighborhood of x0 is the set composed of the global

states obtained from x0 by changing arg(x0j), j ∈ I
within ±δ from φ̄j and leaving x0j , j /∈ I at the origin.
In the following we write “neighborhood Ω” if there is
no need to specify δ. Considering the energy change in
Ω, we now obtain the following result.

Lemma 1: The function U decreases so long as the
state transition occurs in a neighborhood Ω of an equi-
librium.

Proof: Suppose the jth component of x =
(x1 · · ·xj · · ·xN ) ∈ Ω changes to get to the new state
x′ = (x1 · · ·x′

j · · ·xN ) ∈ Ω. Then, the change of the
energy ∆U can be written as

∆U = Re(u∗
jxj) − Re(u∗

jx
′
j) . (5)

By assumption, if the jth local state xj is on the unit
circle, then x′

j is also on the unit circle. Since the argu-
ment of x′

j is the same as that of uj from (2), the first
term in (5) which is the inner product of uj and xj is
always smaller than the second term. Hence, ∆U < 0.

✷

In phasor models, since the global state x̄ exp(iθ)
with an arbitrary θ is also an equilibrium, any one of
the local states is clamped and the behavior of the other
local states in a neighborhood of the equilibrium should
be considered. As for the phasor model with N neu-
rons, it has been shown in [5] that if the energy function
is locally convex in a neighborhood of an equilibrium as
a function of an arbitrary set of N − 1 phase variables
φj , the state stays in the neighborhood against small
initial disturbance. As for the phasor model with rest-
ing states, neurons at the origin can be neglected since
the neurons never affect to the dynamics so long as the
state transition occurs in a neighborhood Ω of an equi-
librium. In other words the phasor model with resting
states can be regarded as a phasor model with |I| neu-
rons. Hence, we can expect to get a similar result on
stability for the phasor model with resting states as in
the phasor model. In fact, we get the following result.

Proposition 2: Choose an arbitrarily i ∈ I. Suppose
that φi is fixed to φ̄i and U is convex in a neighborhood
Ω as a function of the other |I| − 1 variables φj , j ∈
I−{i}. Let Ω1 ⊂ Ω be an arbitrary neighborhood of x̄.
Then, all the sequences of the global states with initial
states in a neighborhood Ω0 ⊂ Ω stay in Ω1.

Proposition 2 ensures that the global state stays near
an equilibrium x̄ if the initial state is sufficiently close
to x̄. In order to prove Proposition 2, we have to take
consideration into the state transition between the ori-
gin and the unit circle, unlike the phasor model. If such
a transition never occurs, we can prove Proposition 2
along a similar way as in the phasor model [5]. We
first show such a transition never occurs during one-
step transition.

Now, let a sequence of the global states generated
by (1) and (2) be denoted by x0,x1, · · · ,xk, · · ·, where
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the subscript k increases when the global state changes.
This state transition can be described formally as fol-
lows:

xk+1 = Φ(xk). (6)

Then, we get the following result.

Lemma 3: The function Φ is continuous at x̄ in terms
of the neighborhood defined above.

Proof: Let δ′ > 0 be arbitrarily given and Ω′ be δ′-
neighborhood of x̄. Take a sufficiently small ϵ > 0.
Then, |∆uj| < ϵ means

|∆uj | < ||ūj|− c|, j = 1, · · · , N

and

| arg(ūj + ∆uj) − arg(x̄j)| < δ′, j ∈ I.

Furthermore, take a sufficiently small δ > 0, which may
depend on ϵ. Then, |φj − φ̄j | < δ assures |∆uj | < ϵ,
due to the continuous dependence of ui on φj . This
implies that if x is taken in δ-neighborhood Ω of x̄ then
Φ(x) ∈ Ω′. ✷

Proof of Proposition 2: Paying attention to the exis-
tence of the neurons at the origin, we can prove Propo-
sition 2 by using Lemmas 1 and 3 along similar way as
in [5]. ✷

In the above discussion, we have considered the
stability of an equilibrium. Furthermore, we get the
following result, which can be combined with Proposi-
tion 2 to mean asymptotic stability of the equilibrium.

Proposition 4: Choose an arbitrarily i ∈ I. Suppose
that φi is fixed to φ̄i and U is convex in a neighborhood
Ω as a function of the other |I|− 1 variables φj . Then,
there exists a neighborhood Ω0 ⊂ Ω such that

xk → x̄ (k → ∞)

whenever the sequence of the global states starts from
the inside of neighborhood Ω0.

Proof: From Proposition 2, it is sufficient to consider
only |I| neurons. Then, we can use the energy as a
Lyapunov function to derive the above result along a
similar way to the well known stability theory, e.g. [8].

✷

Hence, we can conclude that the equilibrium is asymp-
totically stable if the energy is locally convex.

Now a sufficient condition for the local convexity
of the energy is derived as in the phasor model [5]. The
elements of the Hessian matrix of the energy are given
by

∂2U

∂φ2
i

= Re

⎛

⎝x∗
i

∑

j ̸=i

wijxj

⎞

⎠ i, j ∈ I, (7)

∂2U

∂φi∂φj
= −Re (x∗

i wijxj) , i ̸= j, i, j ∈ I (8)

The sufficient condition is that all the (|I|−1)×(|I|−1)
principal submatrices of the Hessian matrix are positive
definite. A sufficient condition for the positive definite-
ness of the principal submatrices is

Re(x̄∗
jwjix̄i) > 0 i, j ∈ I. (9)

For example, this condition is satisfied when the con-
nection weights are determined using the Hebbian rule
to store a single pattern.

4. Conclusions

In this paper, we have considered three issues on phasor
models. First, we have proposed a new phasor model
where the state of each neuron possibly takes the value
at the origin as well as on the unit circle. Second, it
has been shown that analysis of local behavior of the
new phasor model can be reduced to that of the pha-
sor model by introducing a particular notion of neigh-
borhood. Third, a stability result was obtained in a
stronger sense of stability, i.e. asymptotically stability.
Future study is left for the capacity of the proposed
model as an associative memory network.
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