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SUMMARY In this paper, three issues concerning the lin-
ear adaptive receiver using the LMS algorithm for single-user
demodulation in direct-sequence/code-division multiple-access
(DS/CDMA) systems are considered. First, the convergence rate
of the LMS algorithm in DS/CDMA environment is considered
theoretically. Both upper and lower bounds of the eigenvalue
spread of the autocorrelation matrix of receiver input signals are
derived. It is cleared from the results that the convergence rate
of the LMS algorithm becomes slow when the signal power of
interferer is large. Second, fast converging technique using a pre-
filter is considered. The LMS based adaptive receiver using an
adaptive prefilter adjusted by a Hebbian learning algorithm to
decorrelate the input signals is proposed. Computer simulation
results show that the proposed receiver provides faster conver-
gence than the LMS based receiver. Third, the complexity reduc-
tion of the proposed receiver by prefiltering is considered. As
for the reduced complexity receiver, it is shown that the perfor-
mance degradation is little as compared with the full complexity
receiver.

key words:  multiple-access interference suppression, fast con-
vergence, complexity reduction, Hebbian learning algorithm, KL
transform

1. Introduction

In direct-sequence/code-division multiple-access (DS/
CDMA) communication systems, the performance
degradation of the receiver for single-user demodulation
is caused by the multiple-access interference (MAI) due
to the cross-correlation between the spreading sequences
of simultaneously accessing users. There have been
many low-complexity receivers to suppress the MAI[1].
Recently, adaptive receivers with a linear adaptive filter
have been investigated actively[2]-[8]. It is expected
that these can be used for time-variant and/or unknown
channels. One of these receivers is designed based on
the minimum mean square error (MMSE) criterion and
can be realized by the least mean square (LMS) algo-
rithm[7]. In this paper, three issues concerning with
the receiver using the LMS algorithm are considered:
1) analysis of slow convergence of the LMS algorithm;
2) fast convergence by prefiltering; and 3) complexity
reduction by prefiltering.

The LMS algorithm has an advantage for its sim-
plicity. Recent experimental results have shown that
it takes a long time for the training convergence in
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DS/CDMA environment[7],[8]. However, it has not
been cleared that what conditions lead to the slow con-
vergence. It is well known that the convergence rate of
the LMS algorithm can be evaluated by the eigenvalue
spread of the autocorrelation matrix of receiver input
signals[9]. In this paper, first, we try to derive the eigen-
value spread theoretically and consider the conditions
which lead to the slow convergence.

In this paper, second, we consider the use of a pre-
filter for rapid convergence in the LMS based receiver.
The prefilter works as a preprocessor placed before the
conventional LMS based linear adaptive filter. So far,
in the field of the transform-domain adaptive filter tech-
nique, fixed (non-adaptive) prefilters have been used to
provide rapid convergence by decorrelating the input
signals[9],[10]. Because the cause of the slow conver-
gence of the LMS algorithm is nonzero cross-correlation
between input signals. However, since prefilters used
previously, e.g. discrete cosine transformation (DCT),
cannot decorrelate the input signals completely, the re-
sulting convergence rate is not always acceptable. The
Karhunen-Loeve transform (KLT) is known as an ideal
transform for the complete decorrelation. However, the
KLT is a signal-dependent transform and requires the
autocorrelation matrix, the diagonalization of this ma-
trix and the construction of the basis vector. These com-
putations make the KLT impractical for real-time ap-
plications.

On the contrary, it is known in the neural networks
literature that a Hebbian learning algorithm (HLA) can
provide the KLT by online signal processing[11]-[13].
In this paper, we propose to use an adaptive prefilter
adjusted by the HLA. Rapid convergence is expected
since the input signals are decorrelated by the prefilter
which converges to the KLT by using the HLA. A disad-
vantage of receivers using a prefilter including the pro-
posed receiver is the increase of complexity for prefilter-
ing. As described later, the complexity of the proposed
receiver can be easily reduced with small performance
degradation. On the other hand, although Lee[8] has
proposed to use an adaptive prefilter adjusted by the
Gram-Schmidt (GS) orthogonalization for the decor-
relation, its complexity cannot be reduced with small
performance degradation. .

It is generally known that the recursive least squares
(RLS) algorithm provides faster convergence than the
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LMS algorithm[4] if high precision arithmetic is avail-
able. The RLS algorithm, however, has the numeri-
cal instability problem due to finite-precision effects [9].
The problem is caused by the computation of the differ-
ence between two nonnegative definite matrices. Lee[8]
pointed out that the RLS algorithm cannot be employed
in DS/CDMA environment because of the numerical
problem. This paper also presents examples where the
RLS algorithm fails to converge.

The employment of the HLA based prefilter in-
creases the complexity of the receiver. In this paper,
third, we consider the complexity reduction by reduc-
ing the input signal dimension using a prefilter. The
input signal dimension, i.e., the number of the taps, is
reduced by truncating the KLT obtained by the HLA.
Usually, the truncated KLT is used for the feature ex-
traction or the data compression [ 14]. Thus, the perfor-
mance degradation due to the reduction is expected to
be little since the truncated KLT can extract only the
important components. On the other hand, although
Madhow et al.[5] have proposed a non-adaptive pre-
filter for the reduction, its performance degrades since
the prefilter does not reflect the statistics of the input
signal.

In the next section, the communication model is
described. Section 3 presents a linear adaptive receiver
using the LMS algorithm. The eigenvalue spread is con-
sidered theoretically in Sect.4. In Sect.5, the receiver
using the HLA based prefilter is proposed, and the com-
plexity reduction of the receiver is discussed in Sect. 6.
Section 7 presents numerical examples to demonstrate
the performance of the proposed receiver. Finally, a
summary is presented in Sect. 8.

2. Communication Model

Consider an asynchronous DS/CDMA communication
system. Through this paper, a chip-asynchronous sys-
tem is assumed. It is assumed that the channel is time-
invariant and there is only a direct wave, but no delayed
waves. For simplicity, a baseband model is considered.

The received signal of a BPSK-DS/CDMA system
with K users can be written in the form

K
r(t) = Z Z Agbr(p)sk(t — pTp — i) +n(t) (1)

p k=1

where Ay, is the signal amplitude of the kth user, by (p) €
{+1, —1} is the pth data bit, s, (t) is the signature wave-
form, 7y is the timing, T}, is the bit duration and n(t) is
zero-mean white Gaussian noise with PSD Np/2. The
bits {bx(p)} are assumed to be uncorrelated for all k
and p. For ease of presentation, the timings 7, are as-
sumed to satisfy 0 £ 7 < 1, < -+ < 7g < Tp. The
signature waveform s (t) can be expressed as
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L
su(t) = S auPr(t - (1 - DT.) @
=1

where {ay;} is the spreading sequence, L is the length of
the sequence, T, is the chip duration and Pr, (t) is the
rectangular chip waveform: Pr (t) =1 for 0 < t < T;
and O for otherwise.

3. Linear Adaptive Receivers

Taking the first user to be the desired user, the objec-
tive is to demodulate its ith data bit. It is assumed that
both the spreading sequence and the timing of the de-
sired user, i.e., {a1;} and 7y, are known and the training
signals are available at the receiver. Figure 1 shows the
receiver structure. In the figure, the matrix T represents
the prefilter which will be discussed in Sects.5 and 6
in detail. If the matrix T is fixed, we call it the fixed
prefilter. If the matrix T is constructed adaptively, we
call it the adaptive prefilter. In this section, the con-
ventional LMS based receiver where T = I(L x L) is
described.

First, the received signal is fed into the chip-
matched filter and its output is sampled at the chip-rate.
The output for the Ith chip of the ith bit is

iTp+71+HT,
W=z
TiI\) = =
TC in+T1+(l—l)TC

r(t)dt, 1=1,...,L. (3)

The serial-to-parallel converter produces the chip-
matched filter outputs for the ith bit r(:) = (r1(3), r2(3),
...,7.(i))T. The superscript T represents the transpose
of vector or matrix. Then, the received signal vector can
be expressed as

K
r(i) = Aybi(i)ar + Y Ap{bi(i — 1)& + bx(d) &}
k=2
+n(i) O]

where a; = (api,ak2,...,a50)T is the spreading se-

quence vector and n(i) = (ny(i),n2(3),...,np(8)T is
the noise vector. Defining 7, — 71 = v T, + 65, we get

- Ok (1) Ok \ ~(wi)
&= —4a 1——}a’™* 5
k TC k + TC k> ( )
Adaptive
Filter
Prefilter i ' g
ey r Thg N0) X :
ro~{CMA—"C 2 s/p o T b W e 30
bl LMS fe—ei- b0

Fig. 1  Receiver structure.
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& = ;—’Zﬁ,i”’““) + (1 - ,%’“) a (6)
where

2 = (@hLovt1, hLovr2s- - s Ak, 0y, 00T, (T)

ﬁgcu) = (0,...,O,akl,akg,...,akL_,,)T. (8)

Moreover, (4) can be rewritten as a synchronous CDMA
system where virtual 2K — 1 users exist as follows:

2K-1

Z ALY (i)e; + n(3) 9)

where defining ¢(j) = |4 + 1], |x] represents the maxi-
mum integer which does not exceed z, we get A’ = A,(;
for all j; b}(i) = b,(;)(i — 1), ¢; = &,y for jmod2 =0;
and b(i) = b,(;) (i), ¢; = &, for jmod2 = 1.

The output of the linear adaptive filter is given by

y(i) = whr(0) (10)
where w is the L x 1 weight vector. The estimation of

the data bit can be obtained from the adaptive filter
output as

b1 (i) = sgn(y(3))- (11)
The mean square error (MSE) is defined as
Jo(w) = E[(b1(5) — wTr(i))?] (12)

where E[-] represents the expectation operator. The
minimum MSE (MMSE) receiver has the weight vec-
tor which minimizes the MSE[5]. Then, the optimum
weight vector is given by

Wims = AIR—lal (13)

where R = E[r(i)r’(i)] is the L x L autocorrelation
matrix of the input signals.

The optimum weight vector in (13) can be obtained
by a simple iterative procedure, i.e., the LMS algorithm:

w(i +1) = w(i) + u(br (i) — wH(Dr(i)r(i)  (14)

where g is the step size which is chosen such that
0 < p < 2/A; where A; is the maximum eigenvalue
of R. In the sequel, the eigenvalues are arranged in
decreasing order, ie., A\ 2 Ay = -+ 2 Ap. As for
the autocorrelation matrix R, the eigenvalue spread is
defined as [9]
A1

It is clear that x(R) = 1. If there exists strong correla-
tion between the elements of the received signal vector
r(7), the eigenvalue spread becomes large and the con-
vergence rate of the LMS algorithm becomes slow [9].
In DS/CDMA systems, the experimental results which
show the slow convergence of the LMS algorithm have
been reported [7],[8]. However, the conditions which
lead to the slow convergence have not been cleared the-
oretically.

(15)
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4. Evaluation of Eigenvalue Spread

Let us consider the eigenvalue spread theoretically.
Since it is difficult to obtain the eigenvalue spread di-
rectly, both upper and lower bounds are derived. Since
the bits {¥/(7)} and the noise components {n;(i)} in the
received signal vector r(¢) are uncorrelated, the autocor-
relation matrix can be written as

2K-1
R= Y A”R;+o’I (16)
7=1

where R; = ¢;¢] is the autocorrelation matrix of the
jth user’s sequence and 02 = Ny /2T, is the noise vari-
ance. It is clear that all L eigenvalues of the second
term in (16) are ¢2. On the other hand, since R; is
a positive semi-definite matrix and its rank is unity, its
smallest L. —1 eigenvalues are zero [15]. Since the eigen-
vector corresponding to the remaining eigenvalue, i.e.,
the largest eigenvalue, is ¢;, the eigenvalue is

A=) c (17)

By using formulas concerning the eigenvalues of the
sum of Hermitian matrices[16],[17], we can obtain the
following results about the maximum and the minimum
eigenvalues:

2K-1
maxE +o2< A < ZE’+0 (18)
Jj=1
and
2K —
2<00 Z —maxE'+0 (19)

where £ = A =.A;2 S c2; which represents the
signal energy of the virtual jth user when T, =1. From
(18) and (19), we can obtain both upper and lower
bounds of the eigenvalue spread as follows:

max; E‘—l—a2
max < 1, Y| < x(R)
2j=1 B —max; E; +0?
ZzK IE/

< “T' (20)

It is noted that the result is effective regardless of the
number of users.

Furthermore, let us consider the case where the
rank of the first term in (16) r is smaller than L. Al-
though the rank r depends also on the spreading se-
quences and the timings, it depends strongly on the
number of users. The rank r is clearly smaller than
2K — 1, and may be equal to 2K ~— 1 for most cases.
Thus, in the considering case, L may be larger than
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2K —1,1.e.,L > 2K —1. Then, since the L —r smallest
eigenvalues of the first term in (16) are zero, the mini-

mum eigenvalue of R is 02. Using A, = o2 instead of
(19), the eigenvalue spread becomes

max; B + o2 SR 4 62

e R VR e A1)

The result in (21) suggests that there are two cases
where the eigenvalue spread becomes large. The first
is the case where the maximum signal energy becomes
large, while both the other energies and the noise vari-
ance are fixed. If the user who has the largest energy is
an interfering user, both the upper and the lower bounds
increase as the energy of the interference becomes large.
This fact agrees with the experimental results reported
in [7],[8]- The second is the case where the noise vari-
ance becomes small, while all signal energies are fixed.
It may also be observed from (21) that when the number
of users increases the eigenvalue spread does not always
increase. Because the upper bound increases but the
lower bound does not always increase. In our prelimi-
nary simulation, we have confirmed that the eigenvalue
spread decreases when the number of users is over a
certain number.

5. Adaptive Receiver Using HLLA Based Prefilter

Consider the prefiltering of the received signal vector
using a M x L matrix T, where M < L, as follows:

x(i) = Tr(i). (22)

The prefilter is introduced to decorrelate the input sig-
nals for fast convergence and to reduce the input signal
dimension for complexity reduction. If M < L, input
signal dimension is reduced, i.e., M represents the re-
duction order. Then the filtered vector x(¢) is fed into
a linear adaptive filter whose weights are adjusted by
using the LMS algorithm.

Now, (22) is rewritten by dividing the prefilter T
into two parts as

x(i) = Tr(d) = P~Y2Q%r(i) = P~/2v(:) (23)

where T = P7Y/2QT is a divided prefilter, v(i) =
Q7r(d) is a transformed vector, a prefilter Q is a uni-
tary matrix with rank M and P = diag(p1,...,pm) =
diag(E[v(i)vT(i)]) whose diagonal element represents
the power of the element of v(¢). Then, if elements of the
transformed vector v(i) are decorrelated, the eigenvalue
spread of the autocorrelation matrix of the normalized
signal x(z) becomes unity. In the field of transform-
domain adaptive filters, fixed prefilters Q, e.g., DCT,
are used for the decorrelation[10]. However, since
these fixed prefilters cannot decorrelate the input sig-
nals completely, sufficient convergence rate cannot be
obtained. The complete decorrelation is achievable by
the KLT[9]. The KLT is given by Q = (§;,qy,---,q;)
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where @, is the eigenvector corresponding to the Ith
eigenvalue A; of R.

To obtain the eigenvectors by online signal pro-
cessing, we propose to use a Hebbian learning algo-
rithm (HLA). HLAs are unsupervised learning algo-
rithms which have been developed in the filed of neural
networks[13]. It is known that the weight vector of a
neuron converges to a eigenvector by using a HLA[13].
Therefore, it can be expected that an adaptive prefilter
Q converges to the KLT Q by adjusting the prefilter
Q using a HLA. Then, since the input signals can be
decorrelated by the prefilter Q, rapid convergence of the
LMS algorithm can be expected.

In this paper, the generalized Hebbian algorithm
by Sanger[11] and the learning parameter setting tech-
nique by Chen[12] are employed. The proposed algo-
rithm is summarized by the following steps:

Stepl: Initialization: As form =1,...,M, [ =1,
..., L, filter tap weights w,, (0) are set to zero, estima-
tion of eigenvectors §,,;(0) are set to small random
values, and estimation of outputs power p,,(0) are
set to small positive values. Set the step size ¢ to a
small positive value. Set : = 1.

Step2: Prefiltering: The received signal vector is
transformed by the prefilter as

v(i) = Q7 (i — r(i). (24)
Compute the power estimation
P (i) = pn(i = 1) + (0,(1) = pm(i = 1)) /3. (25)

Then, the power estimation matrix is constructed as
P(:) = diag(p,(3),...,pm(3)) and the transformed
vector is normalized as

x(i) = P~Y2()v(i). (26)

Step3: Eigenvector estimation: Compute the time
decreasing coefficient 3(¢), e.g.[12]

B(i) = max{8y,vy x e%}, 27

where (¢, v, €, 7 are predetermined positive con-
stants. The eigenvectors are estimated by using a
HLA.

8
(i) = 50 (28)
(i) = i — 1)+ 70(0) [10) = 3 w008, (0) |-
=1
(29)

Step4: Eigenvector modification: The estimated
eigenvectors are modified by the modified Gram-
Schmidt orthogonalization[18] to be orthonormal
basis.

form:=1to M do
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begin

Tmm = |8, (D5 €, (2) 2= @ () /Trm  (30)
fork:=m+1to M do

begin

P = Q5 (0)i (1);

0.6) = ay()) — 4, ()rme O
end

end

Then, the prefilter is constructed as Qi) = (q,(3),
RONIN0))

Step5: Adaptive filtering: Compute the filter output,
and update the weight vector using the LMS algo-
rithm.

y(@) = wh (i — 1)x(i), (32)
w(i) = w(i — 1) + (b (1) — w7 (i — 1)x(0))x(0).
(33)

Step6: Increment i and repeat from Step2 to Step5
until the weight vector converges.

In the algorithm, two little modifications are im-
posed. First, although Chen et al.[12] used an estima-
tion of an eigenvalue for the denominator in (28), we
use the power estimation in (25) instead since the out-
put power of the prefilter becomes an eigenvalue[13].
This modification eliminates the computation for eigen-
value estimation. Second, we use the modified Gram-
Schmidt orthogonalization to force the transformation
matrix Q(7) to be always a unitary matrix. In Sanger’s
GHA [ 1], the weight vectors automatically become or-
thonormal basis by (29) with an additional term on
the right-hand side. In our preliminary simulation, the
explicit orthogonalization by the Gram-Schmidt pro-
cedure provided faster convergence than the original
Sanger’s GHA. Thus, we employed the Gram-Schmidt
procedure although the computational complexity per
iteration increases, i.e., O(LM?).

The above algorithm does not have the numerical
problem appeared in the RLS algorithm since there is
no computation of the difference between two nonneg-
ative definite matrices. This fact will be confirmed by
computer simulation in Sect. 7.

Next, let us discuss the relation between the receiver
using the prefilter and the MMSE receiver. Consider the
case where the transformation T = P_I/ZQT in (22) is
a Lx L (M = L) matrix. The optimum weight obtained
by the above procedure may be expressed as

w, = A, PY/2QTRa,. (34)
Then, since the filter output becomes
Y=WoX= WL, (33)

the receiver is equivalent to the conventional MMSE re-
ceiver. Thus, the performance of the proposed receiver
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is equal to that of the conventional MMSE receiver.
Note that in the case of M < L, it is not always equal
to the performance of the MMSE receiver.

6. Complexity Reduction

The adoption of the HLA described in the previous sec-
tion increases the receiver complexity. Now, consider to
reduce the input signal dimension, i.e., the number of
adaptive taps, by a M x L matrix T', instead of the L x L
matrix. The matrix is obtained by omitting the lowest
L — M row vectors in the matrix T € REXE. In other
words, the lowest L — M column vectors of the KLT
Q € RE*L is omitted. We call it the truncated KLT.

The KLT is the optimum transform in the sense that
the residual variance on the reconstruction of the origi-
nal vector from its transformed vector is minimized [ 14].
Thus, it is expected that when the input signal dimen-
sion is reduced by the truncated KLT the performance
degradation is little. In particular, if M is set to be
equal to the rank of the signal component of R, it is
expected that its performance is equal to that of the full
complexity case since all the signal components can be
extracted.

If the transformation matrix T'(M x L) is used, the
optimum weight vector is written as

Wre = A (TRTT) 1T a, (36)
Then, the bit error probability is given by

P, = 272(K-1) Z e Z

b,e{-1,1} by _1€{~1,1}

T 2K—-1
Q(wTCT(AlaleZFQ A;b;cj)> 37

0-/

where o/ = |[wlT|c and Q(x) = (2m)'/2
= et /24t

~ For performance comparison, we consider the
cyclically shifted filter bank (CSFB) proposed by Mad-

how et al.[5]. The CSFB is given by
T = (ar, f1,...,fy—1)” (38)

where fir = @1(kt+ia)modar and A = [N/M]. Since the
CSFB does not reflect the input signal statistics, it is
anticipated that its performance degrades.

7. Numerical Examples

The Gold sequences with period L = 31 are used as the
spreading sequences. The number of users is K = 5.
The desired user is the Ist user and its signal energy
is represented by E,. Although the signal energy in
practical channels may vary with time, two typical time-
invariant scenarios employed by Miller[7] and Lee[8§]
are considered as shown in Fig.2. The signal energy of
only the desired user differs from the all interfering users
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Fig. 3 Eigenvalue spread.
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Fig. 4 Convergence rate comparison with LMS algorithm
(M = 31, 52 bit mantissa).

in Miller’s scenario, and the signal energy of only an
interfering (2nd) user differs from other users in Lee’s
scenario. In both scenarios, the situations where the
LMS algorithm becomes slow can be arisen by setting
the interference ratio E;/E; large, where E; represents
the maximum interference signal’s energy.

First, the bounds of the eigenvalue spread in (21)
are evaluated. Figure 3 shows the relation between the
eigenvalue spread versus the interference ratio E;/Ej,
where Ey,/Ng = 30dB. The actual eigenvalue spreads
are obtained by computing the eigenvalues of R. It
is noted that the lower bound curve overlaps with the
actual eigenvalue spread curve in Fig.3(b). It can be
found that the actual eigenvalue spread and both the
upper and the lower bounds increase as the interference
energy increases. This result means that when the inter-
ference energy increases the convergence rate of the LMS
algorithm becomes slow since large eigenvalue spread
results in slow convergence of the LMS algorithm.

Next, the convergence rate of the proposed receiver
is compared with the conventional LMS based receiver
via computer simulation. In Fig. 4, the learning curves
are shown where E,/Ny = 30dB, E;/FE, = 30dB, M =
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Fig. 5 Finite-precision effect in RLS algorithm and proposed
receiver (M = 31, 16 bit mantissa).

31 and the mantissa of floating-point numbers is 52 bit.
The learning curves were obtained by averaging the dis-
tinct 100 trials. The step size p is set to the quarter of the
reciprocal of the total input power[8]. The coefficient
B(4) in (28) is set to G(i) = max{0.001,0.1 x 0.01%/1000}
for both scenarios. In our simulation, this coefficient
was determined empirically. From this figure, one can
observe that the proposed receiver shows faster con-
vergence rate than the LMS based receiver (denoted
as LMS). Although the computational complexity re-
quired per an iteration of the proposed receiver is larger
than the LMS based receiver, the number of training
data required is small since the proposed receiver needs
fewer iterations for the convergence. Although the re-
sults of the RLS algorithm based receiver are not shown
in the figures, the RLS algorithm converged quickly
within several tens of iterations. As shown below, how-
ever, the results of the RLS algorithm are true only if
high precision arithmetic is available.

Next, the finite-precision effect is considered via
computer simulation. In Fig. 5, the learning curves of
the RLS algorithm based receiver (denoted as RLS) and
the proposed receiver are shown where E;, /Ny = 30 dB,
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Fig. 6 Performance degradation due to complexity reduction.

E;,/E, = 30dB, M = 31 and the mantissa is 16 bit.
One can observe that the RLS algorithm fails to con-
verge. On the other hand, the results of the proposed
receiver with 16 bit mantissa is almost the same as the
results with 52 bit mantissa in Fig.4. Therefore, unless
high precision arithmetic is available, the RLS algo-
rithm based receiver cannot be applied, but the pro-
posed receiver is useful because of its robustness to the
finite-precision effect.

Next, the performance degradation due to the com-
plexity reduction is evaluated on the steady state. Since
the number of users is 5, the rank corresponding to the
signal component in (16) is about 9. The bit error per-
formances of the proposed receiver with M = 31 (full
complexity) and the receiver with M = 8 (reduced com-
plexity) are shown in Fig.6. The results of the CSFB
(M = 8) are also shown in the figures for the purpose of
comparison. The performance degradation of the pro-
posed receiver due to complexity reduction is smaller
than the CSFB method. Figure 7 shows the relation
between the error probability and the reduced order M.
As for the CSFB, the performance becomes better with
increasing M. On the other hand, as for the proposed
receiver, no performance degradation can be observed
when M is larger than 9. However, when M is srhall,
the performance degrades suddenly. Thus, it is neces-
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Fig. 7 Bit error probability versus reduction order M.

sary to determine the reduced order M appropriately. If
the number of users K is known, then set M = 2K — 1.
If K is unknown, then M is set to the dimension of the
signal subspace which is needed to estimate.

One of rank estimation methods is presented. It
is known that the transformed signal power p,, in (25)
converges to the eigenvalue A,,, [9]. Asshown in Sect. 4,
if L —r > 0, the L — r smallest eigenvalues are equal to
the noise variance o2. Then, there exists M such that
Py > Pr—1 = -+ = p1(= 0?). The number M may be
used as the reduction order.

Finally, the convergence rates are evaluated via
computer simulation when the input dimension is re-
duced. The learning curves of the reduce complexity
cases M = 10 and 20, and the full complexity case
M = 31 are shown in Fig.8. It can be observed that
the convergence rates of the reduced complexity cases
are slightly faster than that of the full complexity case.
The reason is described below. The time constant of
learning curve in the LMS algorithm is given by [9]

1
2p g

(39)

Tims =~

where A,y = 1/M Zfil A;. In this simulation, since
p=1/(4M) and A,, = 1, the convergence rate becomes
faster as the reduced order M becomes smaller.
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Fig. 8 Learning curves of reduced complexity receivers (52 bit
mantissa).

8. Conclusions

This paper has been considered three issues concerning
the linear adaptive receiver using the LMS algorithm
for DS/CDMA systems. First, the eigenvalue spread
of the autocorrelation matrix has been considered the-
oretically and it has been cleared that the convergence
rate of the conventional LMS algorithm becomes slow
when the interference signal energy becomes large. Sec-
ond, we have proposed the use of an adaptive prefilter
adjusted by a Hebbian learning algorithm to decorre-
late the input signals. Fast convergence of the proposed
receiver has been confirmed via computer simulation.
Third, the complexity reduction by the truncated KLT
has been considered, and it has been shown that perfor-
mance degradation is little.

Finally, let us compare the proposed receiver with
the RLS based receiver. If high precision arithmetic
is available, the RLS algorithm provides faster conver-
gence than the proposed receiver. Unless high precision
arithmetic is available, however, the RLS algorithm fails
to converge. On the other hand, the proposed receiver
is robust to the finite-precision effect. The computa-
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tional complexity required for the RLS algorithm is
O(L?) and that for the proposed receiver is O(LM?).
In summary, the RLS algorithm based receiver is use-
ful when high precision arithmetic is available, and the
length of spreading sequence L is not so long. On the
contrary, the proposed receiver is useful when high pre-
cision arithmetic is not available, a fast CPU is avail-
able, and the number of users is small compared with
the length of spreading sequence since M may be about
2K.

Although the coefficient 8(7) in (28) was deter-
mined empirically in our simulation since the optimum
setting depends on each problem, refining the coefficient
may lead to better results. The optimum setting of the
coefficient is worth investigating in the future. The per-
formance evaluation of the proposed receiver in time
variant channels is our future problem.
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