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Distributed Mutually Referenced Equalization

Yoshiki SUGITANI†a), Member, Wataru YAMAMOTO†∗, Nonmember, and Teruyuki MIYAJIMA†, Member

SUMMARY We propose a distributed blind equalization method for
wireless sensor networks, in which a source sends data and each node
performs time-domain equalization to estimate the data from a received
signal that is affected by inter-symbol interference. The equalization can
be performed distributively based on the mutually referenced equalization
principle. Even if the nodes in the network are not fully connected to
each other, the average consensus technique enables us to perform the
equalization of all channels.
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1. Introduction

Wireless sensor networks utilizing both network technology
and sensing technology have been actively studied. They
consist ofmany distributed sensor nodes and performvarious
types of data processing by exchanging information between
the nodes. Distributed adaptive signal processing, which is
one such type of data processing where the sensor nodes
adaptively adjust their filter coefficients by cooperating with
each other, has attracted much attention [1].

One application of distributed adaptive signal process-
ing is distributed equalization. When a signal transmitted
from a source passes through frequency-selective channels
and is received by the sensor nodes, each node with adap-
tive filters performs time-domain equalization to suppress
inter-symbol interference (ISI) [2], [3].

A blind adaptive algorithm is an attractive approach be-
cause pilot symbols are not required. Various blind adaptive
equalization algorithms have been proposed [2]–[4]. In the
methods reported in previous studies, however, nodes need
to exchange many continuous-valued signals among each
other, such as their received signals, their filter coefficients,
and estimated channels. Exchanging such a large amount of
signals increases the computation cost and number of data
transmissions.

Recently, the distributed generalized Sato algorithm (d-
GSA) was proposed [5], in which each node sends only a
scalar signal to the other nodes. It can significantly reduce
the cost of computation and communication. However, this
algorithm requires that all the channels from the source to
the nodes are almost the same. Thus, in a practical situation
where the channels are sufficiently different from each other,
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we cannot employ d-GSA.
The present letter proposes a distributed blind equaliza-

tion method based on the mutually referenced equalization
principle [6]. Unlike the previous study [5], we assume that
the channels from the source to the nodes are totally differ-
ent from each other. In our method, each node sends only
two scalar signals to the other nodes. We show that, by us-
ing the average consensus technique [7], equalization can be
performed even if wireless links are established among only
some of the nodes.

2. Distributed Equalization

2.1 Wireless Sensor Network Model

Let us consider a situation involving K distributed sensor
nodes and one source, which transmits a data symbol (see
Fig. 1). The data from the source passes through frequency-
selective channels and is received by K nodes. Each sensor
node performs time-domain equalization to estimate the data
from the received signal, which is affected by ISI, while
exchanging information only with the adjacency nodes.

The structure of the kth node is shown in Fig. 1. A
data symbol sn from the source at time n passes through the
frequency-selective channels, and the kth node receives the
signal yk,n, which is expressed by

Fig. 1 Wireless sensor network.
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yk,n =

L∑
j=0

hk, j sn−j + vk,n, k = 1, 2, · · · , K, (1)

where hk, j is the impulse response of the channel from the
source to the kth node, L is the order of the channel impulse
responses, and vk,n is additive white Gaussian noise.

In the kth node, the received signal yk,n is delayed and
passes through two adaptive FIR filters with length M . The
output of the FIR filter with delay d ∈ {0, P} is given by

z(d)
k,n
=

M−1∑
j=0

g(d)∗
k, j

yk,n+d−j = g(d)H
k

yk,n+d, d = 0, P, (2)

where g(d)
k, j

is a filter coefficient of the FIR filter,

g(d)
k
=

[
g(d)
k,0 · · · g(d)

k,M−1

]T
∈ CM×1,

yk,n+d =
[
yk,n+d · · · yk,n+d−M+1

]T
∈ CM×1.

Here, the superscripts T and H denote the transpose and
conjugate transpose of a vector, respectively.

For data symbol estimation and filter coefficients up-
date, each node requires the averaged output signals of all
the nodes for the filter with delay d, which is given by

r (d)
n =

1
K

(
z(d)

1,n + · · · + z(d)
K,n

)
, d = 0, P. (3)

However, each node cannot obtain all the outputs z(d)
k,n

be-
cause each node connects only with its neighbor nodes.
Thus, each node estimates r (d)

n according to the average
consensus technique [7] as will be described in Sect. 2.2.
Let r (d)

k,n
be the estimation of r (d)

n in the kth node. Then,
r (d)
k,n

for d = 0, P are used to update filter coefficients as will
be described in Sect. 2.3 and to estimate the data symbol as
ŝn = r (0)

k,n
.

2.2 Averaged Output Signal Estimation by Average Con-
sensus

To obtain the estimate r (d)
k,n

of the averaged output signal
r (d)
n , we employ the average consensus technique [7]. The

kth node has two auxiliary variables x (d)
k

[t] (d = 0, P) and
exchanges x (d)

k
[t] between the adjacency nodes connecting

with the kth node through wireless links (see Fig. 1). We
assume that the communication channels between nodes are
perfectly noiseless and distortionless. The value of x (d)

k
[t] is

updated by the following equation:

x (d)
k

[t +1] = x (d)
k

[t]+
∑
l∈Nk

Wk,l

(
x (d)
l

[t] − x (d)
k

[t]
)
, (4)

where Nk is the set of nodes connected with the kth node
and Wk,l is the (k, l) element of the weight matrix W. If
W satisfies some conditions, x (d)

k
[t] converges to the aver-

age of the initial values of all the nodes as t → ∞, i.e.,

limt→∞ x (d)
k

[t] = (1/K )
∑K

k=1 x (d)
k

[0], ∀k [7]. Thus, by set-
ting the initial value as x (d)

k
[0] = z(d)

k,n
, x (d)

k
[t] converges to

r (d)
n as t → ∞. Since the number of iterations is finite in
a practical situation, the updated value after R times itera-
tions is used as the estimated averaged output signal, i.e.,
r (d)
k,n
= x (d)

k
[R].

2.3 Distributed Equalization Algorithm

Each node distributively adjusts the filter coefficients based
on the mutually referenced equalization principle [6] such
that the following cost function is minimized:

J (g) = E
[���r

(0)
n − r (P)

n
���
2]
, (5)

where g =
[
gT1 · · · g

T
K

]T
and gk =

[
g(0)T
k

g(P)T
k

]T
. To

minimize the cost function, each node updates its filter coef-
ficients by using the stochastic gradient algorithm as follows:

gk[n + 1] = gk[n] − µ
∂

���r
(0)
k,n
− r (P)

k,n
���
2

∂g∗
k

= gk[n] − µ
1
K

ỹk,n
(
r (0)∗
k,n
− r (P)∗

k,n

)
, (6)

where µ > 0 is a step gain and ỹk,n =
[

yT
k,n

−yT
k,n+P

]T
.

Note that the estimated averaged signal r (d)
k,n

is used for the up-
date instead of r (d)

n . Moreover, the norm constraint | |gk | | = 1
is imposed to avoid a trivial solution gk = 0. Owing to this
constraint, gk is normalized as follows:

gk[n + 1] =
gk[n + 1]
| |gk[n + 1]| |

. (7)

The proposed algorithm is summarized as follows:

Step 1 n = 0, and initialize gk[0], and determine the step
gain µ, the number of iterations R for average consen-
sus, and the number of iterations I for equalization.

Step 2 Obtain the filter output z(d)
k,n

by Eq. (2).
Step 3 Set x (d)

k
[0] = z(d)

k,n
, update x (d)

k
[t] R times by using

Eq. (4), and set r (d)
k,n
= x (d)

k
[R]. Obtain ŝn = r (0)

k,n
.

Step 4 Update the filter coefficient according to Eqs. (6) and
(7).

Step 5 n = n + 1, and return to Step 2 until n reaches I.

3. Simulation Results

Unless otherwise noted, we used the simulation parameters
in Table 1. The channel coefficients are modeled as complex
Gaussian random variables with zero mean and variances
ρ2
l
= λexp(−αl), l = 0, · · · , L, where α = 0.23 and λ de-

notes a constant ensuring the unit average energy of the
channel. The received SNR is defined as SNR = K σ2

s p0
σ2

n
,

where σ2
s is the transmitted signal power, σ2

n is the noise
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Table 1 Simulation parameters.

Modulation scheme coherent QPSK
Channel order L 2
Filter length M 4

Number of nodes K 5
Number of iterations for average consensus R 15

Number of iterations for equalization I 103

Delay P 5

variance, and p0 is the sum of the mean square of all paths
for each channel. We assume that phase ambiguity, which is
inherent to all blind schemes, can be resolved. In practice,
the ambiguity should be resolved for coherent demodulation
by transmitting short training symbols or adopting differen-
tial encoding/decoding. BER is obtained by averaging over
103 simulation trials where each trial has different channels.
BER in each trial is measured over 104 QPSK symbols after
I iterations of updating the filter coefficients.

In this section, we assume that each node in the sensor
network connects with only two neighboring nodes. For the
update of Eq. (4), we employ Metropolis-Hasting weights
[7]:

Wk,l =




1
1+max{dk,dl }

if k and l are connected

1 −
∑

k,l Wk,l if l = k
0 otherwise

,

where dk is the number of nodes connecting with the kth
node.

Figure 2 shows the BER performance of the proposed
algorithm (labeled as “distributed MRE”). For each SNR,
we chose the step gain from µ ∈ {10−3, 10−2, 10−1} such that
the lowest BER is achieved. We also show the results of two
centralized equalizations (centralized MRE (| |g| | = 1) [6]
and centralized MRE (| |gk | | = 1)): the former determines
all the filter coefficients g in a centralized manner such that
the cost function (5) is minimized under the norm constraint
| |g| | = 1 by a batch method using 103 received samples; the
latter updates the filter coefficients of each node according to
Eqs. (6) and (7) on the assumption that the outputs of all the
nodes are known (i.e., r (d)

k,n
= r (d)

n in Eq. (6)). In addition, we
show the result of the distributed generalized Sato algorithm
(d-GSA) [5]. We can see the effectiveness of the proposed
algorithm in the result. On the other hand, the performance
of d-GSA is very poor because d-GSA is expected to work
well only in an environment where all the channels from the
source to the nodes are almost the same. Furthermore, the
performance of distributedMRE is approximately 3dB better
than that of centralized MRE (| |g| | = 1). Both centralized
MRE (| |g| | = 1) and distributed MRE have the same cost
function (5) but different constraints | |g| | = 1 and | |gk | | = 1,
respectively. Because of this difference, distributed MRE
could prevent the filter outputs of some nodes from being
weakened. Moreover, the performance of distributed MRE
and centralized MRE (| |gk | | = 1) is almost same. This result
indicates that the constraint | |gk | | = 1 is better than | |g| | = 1,
and that the average consensus for distributed MRE works

Fig. 2 Comparison of d-GSA and distributed MRE.

Fig. 3 Influence of the number of iterations R on the average consensus
(SNR = 50dB, µ = 10−3).

well. As can be seen in Fig. 2, the diversity order of MREs
is about 1.5 despite using five antennas. The reduction of
diversity order is a disadvantage of MRE.

Figure 3 shows the influence of the number of iterations
for average consensus R, which corresponds to the number
of information exchanges between nodes for one data symbol
estimation. With increasing R, BER reduces and converges
with R = 10 at most. Thus, only a small R value is sufficient
to achieve consensus, i.e., to estimate a data symbol.

4. Conclusion

The present letter proposed the distributed blind equaliza-
tion algorithm based on the mutually referenced equalization
principle for wireless sensor networks. Numerical simula-
tions showed that, if the channels are totally different from
each other, the performance of the proposed algorithm is
significantly better than that of d-GSA and slightly better
than that of centralized MRE. Even if each node connects
with only some of the nodes in a network, we can equalize
the channels by using the average consensus technique. To
overcome the disadvantage ofMRE, developing equalization
schemes with higher diversity order is worthwhile.
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