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PAPER
PTS-Based PAPR Reduction by Iterative p-Norm Minimization
without Side Information in OFDM Systems

Moeko YOSHIDA†∗, Student Member, Hiromichi NASHIMOTO††, Nonmember,
and Teruyuki MIYAJIMA†††a), Member

SUMMARY This paper proposes a partial transmit sequences (PTS)-
based PAPR reductionmethod and a phase factor estimationmethodwithout
side information for OFDM systems with QPSK and 16QAM modulation.
In the transmitter, an iterative algorithm that minimizes the p-norm of a
transmitted signal determines phase factors to reduce PAPR. Unlike con-
ventional methods, the phase factors are allowed to take continuous values
in a limited range. In the receiver, the phase factor is blindly estimated by
evaluating the phase differences between the equalizer’s output and its clos-
est constellation points. Simulation results show that the proposed PAPR
reduction method is more computationally efficient than the conventional
PTS. Moreover, the combined use of the two proposed methods achieves a
satisfactory tradeoff between PAPR and BER by limiting the phase factors
properly.
key words: OFDM, PAPR, PTS, adaptive algorithm, blind estimation

1. Introduction

High peak-to-average power ratio (PAPR) is a major draw-
back of orthogonal frequency divisionmultiplexing (OFDM)
for high-speed wireless communications because it causes
nonlinear distortion and low power efficiency at the trans-
mitter power amplifier. Many researchers have proposed
various PAPR reduction methods [1], [2], including clipping
and filtering, tone reservation (TR) [3], and selective map-
ping (SLM) [4]. Among these methods, the partial transmit
sequences (PTS) [5] has attracted a significant amount at-
tention in the research community [6]–[15]. PTS, as well as
SLM, does not cause a transmit power increase and signal
distortion [1]. Also, PTS requires less amount of com-
putation than SLM [2]. There are two disadvantages that
we should overcome to make PTS practical: computational
complexity increase due to phase factor optimization and
data rate loss due to side information (SI) transmission.

In the conventional PTS [5], a data block is divided into
resource blocks (RBs), and data symbols in an RB are rotated
by a phase factor taking a discrete value in a finite set. Its
PAPR reduction performance improves as either the number
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of possible values of phase factors and that of RBs increases.
However, the optimization of phase factors requires an ex-
haustive search whose complexity increases exponentially
with the number of RBs. To overcome the complexity is-
sue, computationally efficient methods have been proposed.
Their common idea is to find sub-optimum phase factors by
reducing the search space [6], [7] or employing optimiza-
tion algorithms [8]. In these methods using discrete-valued
phase factors, complexity reduction can be achieved at the
expense of PAPR reduction performance degradation.

Recently, it has been reported that the use of continuous-
valued phase factors improves the performance as well as
complexity reduction [9], [10]. A notable work in this line is
[11] where an iterative method based on the constant modu-
lus algorithm (CMA) optimizes the continuous-valued phase
factors. This method achieves lower PAPR than the conven-
tional PTS by a few iterations. As we show later, however,
the CMA cost function is quite different from PAPR. The in-
finity norm of a transmitted signal, which can be equivalent
to PAPR, may be a good candidate for a cost function as used
in TR [16] and SLM [17]. However, it is also shown later
that the infinity norm cost function is not suitable for PTS
due to the existence of local minima. This suggests that it is
worth exploring other cost functions.

Another issue of PTS is that the information of the phase
factors is transmitted as SI for proper demodulation at the
receiver. It results in not only data rate loss, but also BER
degradation due to erroneous detection of SI. To overcome
this issue, various methods without SI have been proposed.
In [12], the information of phase factors is embedded in
the transmitted signal. In [13], [14], maximum likelihood
decoding is applied to recover the data symbols rotated by
a modified phase factor. These methods exploit the dis-
crete nature of phase factors, and cannot be applied to the
PTS using continuous-valued phase factors. The methods
in [10], [13], [15], which can be applied to the continuous-
valuedPTS, use pilot symbols inserted in eachRB to estimate
the corresponding phase factor. However, the pilot-based
methods are impractical for the PTS with a number of RBs
since the use of many pilot symbols reduces the effective
data rate.

In this paper, we propose a computationally efficient
PAPR reduction method where the continuous-valued phase
factors are obtained by iteratively minimizing the p-norm
cost function. Moreover, we propose a phase factor esti-
mation method without SI and pilot symbols. By properly
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limiting the allowable range of phase factors without sacri-
fice of PAPR reduction performance, the phase factors can be
successfully estimated and the resulting BER performance
is satisfactory.

2. PTS-based OFDM System Model

2.1 Transmitter

We consider a PTS-based OFDM system with N subcarri-
ers. Block diagram of the transmitter is shown in Fig. 1(a).
A frequency-domain data block d = [d1 d2 . . . dN ]T is
partitioned into U RBs. The uth RB is represented by

su = [su,1 su,2 . . . su,N ]T , (1)

su,n =



dn, (u − 1)Nb + 1 ≤ n ≤ uNb

0, otherwise
(2)

where Nb = N/U is the number of data symbols per RB.
A time domain signal of length N is obtained by taking the
inverse discrete Fourier transform (IDFT) of su as

xu = FHsu (3)

where F denotes the N-point DFT matrix whose (k, l)th
element is exp(−j2π (k−1)(l−1)/N )

√
N

. At a PTS transmitter, we
multiply the signal xu by a phase factor ωu = e jθu where θu
is a phase coefficient. Then, a transmitted signal x is given
by

x = [x1 x2 . . . xN ]T = Aω = FHSω (4)

where A = [x1 x2 . . . xU ], ω = [ω1 ω2 . . . ωU ]T , and
S = [s1 s2 . . . sU ]. This signal is transmitted after a cyclic
prefix (CP) is added to the top of x. The basic idea of PTS is
to optimize the phase factors {ωu } in (4) so as to minimize
the PAPR of the transmitted signal, which is defined below.

To approximate the PAPR of a continuous-time trans-
mitted signal, we consider an Fs times oversampled OFDM
signal given by

x̃ = [x̃1 x̃2 . . . x̃FsN ]T = Ãω (5)

where Ã = [x̃1 x̃2 . . . x̃U ], x̃u = F̃Hsu , and F̃ is an N × FsN
matrix whose (k, l)th element is exp(−j2π (k−1)(l−1)/FsN )

√
N

. The
PAPR of x̃ is defined as

PAPR =
‖x̃‖2∞

E[| x̃n |2]
=

max1≤n≤FsN | x̃n |
2

E[| x̃n |2]
(6)

where E[·] denotes the expectation operator.

2.2 Receiver

At a receiver shown in Fig. 1(b), the received signal after
removing the CP is represented by

r = [r1 r2 . . . rN ]T = Hcx + z (7)

whereHc denotes the circulantmatrix composed of the chan-
nel impulse response and z is the noise component. The

Fig. 1 Block diagram of transmitter and receiver.

frequency-domain signal obtained by DFT is given by

y = Fr = FHcx + Fz = FHcFHSω + Fz. (8)

If the channel is known at the receiver, frequency-domain
equalizer (FDE) outputs are represented by

ŝ = [ŝ1 ŝ2 . . . ŝN ]T = Vy = Sω + VFz (9)

where V = (FHcFH )−1 denotes an FDE matrix. Finally,
we remove the effect of the phase factors to recover the data
symbols as

d̂ = Ω̂H ŝ (10)

where

Ω̂ =



e j θ̂11Nb
0 · · · 0

0 e j θ̂21Nb

. . .
...

...
. . .

. . . 0
0 · · · 0 e j θ̂U 1Nb



, (11)

θ̂u is an estimate of θu , and 1Nb
is an Nb × 1 vector with

all-one elements.
Our purpose is twofold:

1) To determine ω or θ = [θ1 θ2 . . . θU ]T at the transmitter
such that the PAPR of x̃ is reduced significantly;

2) To estimate ω or θ at the receiver without side informa-
tion.

3. Optimization of Phase Factors

3.1 Conventional PTS-Based Methods

In the conventional PTS [5], a phase factor ωu = e jθu is
restricted to a finite set consisting of B discrete values, i.e.,
θu ∈ {2π(k − 1)/B | k = 1, 2, · · · , B} where B is the number
of phase candidates (we refer to it as discrete-valued PTS
(DPTS)). Since θ1 can be fixed without any performance
loss, there are BU−1 combinations of phase factors. We
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Fig. 2 Example of PAPR and cost functions.

evaluate the PAPR of x̃ for each combination, and select
the optimum one which achieves the smallest PAPR. This
exhaustive search requires a huge computational complexity
which increases drastically as U or B increases.

Let us examine the advantage of continuous-valued
phase factors over discrete-valued ones. We consider a sim-
ple example where N = 256, Fs = 4, andU = 2. In Fig. 2(a),
an example of PAPR as a function of θ2 is shown. Four plots
on the curve are obtained by DPTS with B = 4. As can
be seen, the minimum PAPR value cannot be achieved by
DPTS. This example suggests that PAPR can be lowered by
using continuous-valued phase factors.

The CMA-based method [11] determines continuous-
valued phase factors such that the following cost function is
minimized:

JCMA(ω) =
FsN∑
n=1

(| x̃n |2 − α)2 (12)

where α represents the average transmitted signal power.
After the initialization of ω0, the phase factors are updated
by the following gradient descent method:

ω̄i+1 = ωi − µCMAÃH ŝie, (13)
ωi+1 = ω̄i+1 � |ω̄i+1 | (14)

where ŝie = ŝi � ei , ŝi = Ãωi , ei = (ŝi � ŝi∗) − α1FsN ,
µCMA is a step size parameter, � represents the element-
wise product, � represents the element-wise quotient, and |·|
represents the element-wise absolute value. Unlike DPTS,
its computational complexity does not increase exponentially
with U and is independent of B.

Let us look at the previous example again. In Fig. 2(b),
an example of the CMA cost function JCMA(θ2) as a func-
tion of θ2 is shown. As can be seen, the surface of JCMA(θ2)
is very smooth. However, the phase coefficient θ2 corre-
sponding to the minimum JCMA(θ2) is different from that
corresponding to the minimum PAPR. This motivates us to
investigate cost functions other than JCMA(ω).

3.2 p-Norm Minimization

Since the average power E[| x̃n |2] is constant, PAPR in (6)
can be minimized by minimizing the infinity-norm of x̃. An

immediate idea is to employ the infinity-norm of x̃ as the
cost function:

J∞(ω) = ‖x̃‖∞ = max
n
| x̃n |. (15)

Gradient descentmethods for the infinity-normminimization
have been considered for the TR method in OFDM systems
[16] and the SLM method in space shift keying OFDM sys-
tems [17]. As can be observed in Fig. 2(c), however, the
infinity-norm cost function J∞(θ2) is a non-smooth func-
tion and has multiple local minima. Then, gradient descent
algorithms can get trapped in one of the undesired minima.

To overcome this issue, we consider the p-norm of x̃
given by

Jp (ω) = ‖x̃‖p = p

√√√
FsN∑
n=1
| x̃n |p . (16)

Through some numerical examples, we have confirmed a
tendency that Jp (θ2) is smooth but its minimum is different
from the minimum PAPR for too small p, and vice versa for
too large p. In Fig. 2(c), an example of the cost function
Jp (θ2) with p = 32 is shown. It can be observed that
the Jp (θ2) is smooth, and the position of its minimum is
almost coincident with that of theminimumPAPR. From this
example, we can expect that a lower PAPR can be achieved by
a gradient descent method of Jp (ω) with a properly chosen
value of p.

Now, we derive an iterative gradient descent algorithm
for Jp (ω) minimization. We consider the direct update of
the phase coefficients θ rather than the phase factors ω. The
gradient of Jp (θ) with respect to θ is given by

∂Jp (θ)
∂θ

= 2<


j *
,

FsN∑
n=1
| x̃n |p+

-

1−p
p

*
,

FsN∑
n=1

x̃∗n | x̃n |
p−2ã∗n+

-
� ω


(17)

where ãH
n denotes the nth row of Ã and<[·] represents the

real part of a complex number. Then, the updating equation
is written by

θi+1 = θi − µp
∂Jp (θ)
∂θ
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= θi−µp<


j *
,

FsN∑
n=1
| x̃in |

p+
-

1−p
p

*
,

FsN∑
n=1

x̃i∗n | x̃
i
n |

p−2ã∗n+
-
� ωi


(18)

where ωi = [e jθ i1 . . . e jθ iU ]T , x̃in = ãH
n ω

i , and µp is a step
size parameter.

For reference purpose, we derive an iterative algorithm
for J∞(θ) minimization. Since the gradient of J∞(θ) is
difficult to obtain directly, we approximate it by the limit of
the gradient of p-norm as [16], [17]

∂J∞(θ)
∂θ

= lim
p→∞

∂Jp (θ)
∂θ

= <
[
j x̃∗b | x̃b |

−1ã∗b� ω
]
(19)

where b = arg maxn | x̃n |. Then, the updating equation can
be written as

θi+1 = θi − µ∞<
[
j x̃i∗b | x̃

i
b |
−1ã∗b� ω

i
]

(20)

where µ∞ is a step size parameter.

3.3 Proposed PAPR Reduction Method

At the receiver, the knowledge of θ is required to remove
the effect of phase rotation by θ. To get the knowledge
of θ, it is undesirable to use SI or pilot symbols, which
waste bandwidth. If θ is determined according to (18) and
is allowed to take any value in [0, 2π], it is impossible to
estimate θ at the receiver without SI or pilot symbols.

To overcome this issue, we propose to limit the range
of θ to identify θ uniquely at the receiver. More specifically,
θu is allowed to take a value in (−θlim,+θlim). The choice of
θlim > 0 affects both the PAPR characteristic and the BER
performance. The influence of θlim is discussed later. The
procedure of the proposed method is summarized as follows:

Step 1) Set the initial value θ0 to zero.
Step 2) Update θi by (18).
Step 3) Round θiu taking a value outside the range

(−θlim,+θlim) down(up) to θlim(−θlim) as follows:

θiu =




θiu, −θlim ≤ θ
i
u ≤ + θlim

−θlim, θiu < −θlim

+θlim, θiu > +θlim

. (21)

Step 4) Repeat Step 2) and Step 3) until the preset number
of iterations I.

3.4 Computational Complexity

Let us consider the computational complexity required to
determine θ at the transmitter. The number of complex
multiplications required by DPTS CDPTS and that by the
proposed method Cp are given by

CDPTS = BU−1UFsN + BU−1FsN, (22)
Cp = {(2U + q + 1)FsN + 2U + 2}I (23)

Table 1 Computational complexity comparison.
U CDPTS Cp

4 6.5×104 1.4×106

8 1.7×107 2.3×106

16 1.1×1012 3.9×106

32 4.7×1021 7.2×106

64 8.7×1040 1.4×107

where p = 2q . In (22), the first and second terms are required
to generate BU−1 phase factor candidates and to evaluate
the PAPR in (6), respectively. Note that the computation
corresponding to the first term can be avoided for B ≤ 4 or
be reduced for B > 4 by IQ swapping and sign inversion
if θu takes a value in the set { 2π (m−1)

B ,m = 1, . . . , B} where
B = 2b and b is a positive integer. Table 1 compares CDPTS
and Cp where N = 256, B = 4, I = 100, q = 5 (p = 32), and
the first term in (22) is ignored. It can be observed that the
complexity of the proposed method almost increases linearly
with the number of RB U, whereas that of DPTS increases
exponentially.

4. Blind Estimation of Continuous Phase Factors

4.1 QPSK

We propose a method to blindly estimate a phase coefficient
θu (equivalently, phase factorωu = e jθu ) for QPSKmodula-
tion with constellation points si, i = 1, 2, 3, 4. The basic idea
is to estimate θu from the difference between an FDE output
and its closest constellation point.

Assuming that the channel is known at the receiver, the
FDE outputs of the uth RB are given by

ŝ(u−1)Nb+nb = e jθu su,nb + wu,nb (24)

for nb = 1, 2, · · · , Nb , where wu,nb is a noise component.
Fig. 3 shows an example. Suppose that s1 is the transmitted
data symbol, i.e., su,nb = s1. In the absence of the channel
noise (a), the closest point to the FDE output ŝ(u−1)Nb+nb is
s1 if θlim satisfies

θlim ≤ π/4. (25)

Then, the phase difference θ̂u,nb between ŝ(u−1)Nb+nb and s1
is identical to θu . In noisy situations as shown in Fig. 3(b),
θ̂u,nb is not identical to θu . Thus, we get a final estimate
by averaging θ̂u,nb over Nb symbols in the uth RB. The
estimation procedure is summarized as follows:

Step 1) Find the closest constellation point to an FDE output
ŝ(u−1)Nb+nb for nb = 1, 2, · · · , Nb as follows:

p̂u,nb = arg min
p
| ŝ(u−1)Nb+nb − sp |. (26)

Step 2) Obtain the phase difference between the FDE output
and its closest constellation point:

θ̂u,nb = arg(ŝ(u−1)Nb+nb ) − arg(s p̂u,nb ). (27)

Step 3) Obtain the phase coefficient estimate of the uth RB
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Fig. 3 Example of phase estimation for QPSKwhere s1 is the transmitted
symbol. (a) noiseless estimate θ̂u,nb

is equal to θu if θlim < π/4. (b)
noisy estimates θ̂u,nb

are different from θu and are refined by averaging
them.

θ̂u by averaging θ̂u,nb over Nb symbols in the uth RB:

θ̂u =
1

Nb

Nb∑
nb=1

θ̂u,nb . (28)

Since the phases coefficients are estimated in a decision
directed manner in (27), it is desirable that there are a few
errors on the tentative data decision in (26). To prevent
the tentative decision error, θlim should be small. However,
PAPR cannot be lowered for small θlim. Thus, θlim should be
determined by taking into account the trade-off betweenBER
and PAPR. It is noted that even if there are a few erroneous
tentative decisions, the estimation result is acceptable due to
the averaging in (28). Actually, our preliminary simulations
(not shown here) have shown that the BER performance
of the proposed method is superior to that obtained by the
tentative decision (26) without Steps 2 and 3.

The proposed method can also be applied to BPSK
modulation. In this case, the condition (25) is replaced by
θlim ≤ π/2. Similarly, the procedure can be applied to M-
ary PSK by setting θlim ≤ π/M . However, since the range
(−θlim, θlim) becomes narrow for large M , PAPR cannot be
lowered significantly. Amodifiedmethod for 16QAMshown
in the next subsection can be applied to such cases.

The receiver requires the knowledge of the channel.
Channel estimation methods using pilot symbols are com-
monly used, but they do not work in PTS-based systems.
Because they cannot distinguish between the phase rotation
by the channel and that by PTS. On the other hand, blind
channel estimation methods such as [18] work since they are
not affected by the phase rotation due to PTS. Thus, through-
out the paper, we can assume the perfect channel knowledge
at the receiver.

4.2 16QAM

When the proposed estimationmethod is applied to 16QAM,
it is anticipated that the PAPR performance becomes poor
because θlim is very restricted. To resolve this issue, wemod-
ify the estimation method. The basic idea of the modified

Fig. 4 Decision region for 16QAM where filled circles denote constella-
tion points and the open circle denotes an example of an FEQ output.

method is as follows: θlim is allowed to take a value in (25)
to ensure a low PAPR characteristic; and not only the closest
constellation point but also the second closest point is taken
into consideration for phase estimation.

Let us consider the 16QAMmodulation where constel-
lation points are {±1± j,±1±3 j,±3±3 j,±3± j}. We define
decision regions of an FDE output ŝi as shown in Fig. 4:

R1 : | ŝi | < r1

R2 : r1 < | ŝi | < r2

R3 : | ŝi | > r2

where r1 = (
√

2 +
√

10)/2 = 2.2882 and r2 = (
√

10 +√
18)/2 = 3.7025†. We denote the region where an FDE

output ŝ(u−1)Nb+nb falls in as Ru,nb . For example, Ru,nb =

R2 if ŝ(u−1)Nb+nb is in the region R2. The modified phase
estimation procedure for θu is summarized as follows:

Step 1) Find the region Ru,nb for nb = 1, 2, · · · , Nb .
Step 2) Find the closest constellation point p̂u,nb,1 in Ru,nb

to ŝ(u−1)Nb+nb in the same way as (26). In addition, if
Ru,nb = R2, find the second closest point p̂u,nb,2 in R2.

Step 3) Obtain the phase difference θ̂u,nb,1 between
ŝ(u−1)Nb+nb and s p̂u,nb ,1 in the same way as (27). In
addition, if Ru,nb = R2, obtain the phase difference
θ̂u,nb,2 for the second closest point.

Step 4) Suppose that N2 out of Nb FDE outputs fall in R2.
Then, there are 2N2 combinations of Nb phase dif-
ferences {θ̂u,nb,i }. For the kth combination, set the
phase difference of the nbth symbol θ̂ (k)

u,nb to θ̂u,nb,1 if
Ru,nb = R1 or R3, or set θ̂ (k)

u,nb to θ̂u,nb,1 or θ̂u,nb,2 if
Ru,nb = R2.

Step 5) Obtain the average θ̂ (k)
u of θ̂ (k)

u,nb for k =

1, 2, · · · , 2N2 , in the same way as (28).
Step 6) Determine the final estimate θ̂u = θ̂ (k̂)

u where

†r1 is chosen such that the circle centered at the origin with the
radius of r1 is in the middle of the circle passing through s6 with
the radius of

√
2 and the circle passing through s2 with the radius

of
√

10. r2 is chosen in the same way.
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k̂ = arg min
k

1
Nb

Nb∑
nb=1

(
θ̂ (k)
u − θ̂

(k)
u,nb

)2
. (29)

The idea behind of (29) is that we choose the phase combina-
tion with the minimum variance within an RB because if the
tentative decision in Step 2) is correct the phase difference
is small.

4.3 Computational Complexity

Let us evaluate the computational complexity for phase es-
timation at the receiver. First, we consider the QPSK case
described in 4.1. The numbers of complex multiplications in
each Step are C×1 = 4N,C×2 = N , and C×3 = U , respectively.
The total number of multiplications is C×

QPSK
= 5N + U .

Next, we consider the 16QAM case shown in 4.2. The
numbers of complex multiplications in each Step are C×1 =
N,C×2 = 4N + 4N2, C×3 = N + N2, C×4 = 0, C×5 = 2N2U ,
and C×6 = 2N2 NbU, respectively. The total number of mul-
tiplications is C×16QAM

= 6N + 5N2 + 2N2 (U + N ). The
computational complexity can increase exponentially in the
case of 16QAM.

In the conventional pilot-based phase estimation meth-
ods [13], [15], their computational complexity, which is pro-
portional to U, does not depend on modulation schemes.
Unlike the proposed blindmethod, however, theywaste band-
width due to the transmission of pilot symbols.

5. Simulation Results

Unless otherwise stated, the parameters used in the simula-
tion are as follows: the number of subcarriers N = 256, over-
sampling factor Fs = 4, the number of RBU = 8 (DPTS), 32
(CMA, proposed method), the number of phase candidates
of DPTS B = 4, the number of iterations I = 100, CP length
P = 64, and p = 32. The phase limitation θlim is param-
eterized as θlim = π/4×R where R ∈ (0, 1] is the limiting
factor and its default value was R = 1.0. We considered
quasi-static Rayleigh fading channels of order L = 10 where
channel taps were modeled as complex Gaussian random
variables. Modulation scheme was QPSK. The step sizes
were chosen such that the fastest convergence is achieved.
We set the initial value of the phase coefficients θ0

u to zero†.
First, we show the performance of continuous-valued

PTS methods when the range of θ is unlimited. Fig-
ure 5 shows complementary cumulative distribution func-
tions (CCDF) of the CMA-based method [11], the p-norm
based method, and the infinity-norm based method. The per-
formances of the continuous-valued PTSs are better than that
of the conventional discrete-valued PTS (DPTS). Especially,
the p-norm based method provides the best performance.

†We tried other initial values and obtained the same perfor-
mance for the proposed p-norm based method with p = 32. Un-
fortunately, the convexity of the cost function Jp is not ensured.
Nevertheless, the initial value issue seems not to be serious by
choosing p carefully.

Fig. 5 CCDF by various PTS methods without phase limitation.

Fig. 6 Effect of p on PAPR performance.

This result supports the intuitive argument in Sect. 3.
In Fig. 6, the effect of p on PAPR performance of

the proposed method is shown. The vertical axis rep-
resents the PAPR which achieves CCDF of 10−3, i.e.,
Pr(PAPR > PAPR0) = 10−3. We can observe that the PAPR
performance depends on p. As mentioned in 3.2, from our
preliminary simulation results, we have confirmed that the
position of theminimumof the cost function is different from
the position of the minimum PAPR when p is small. Also,
we have found that the cost function has undesired local min-
ima when p is large. On the other hand, as can be seen in
Fig. 2(c), undesired local minima vanish, and the minimum
of the cost function is coincident with the minimum PAPR
for moderate p. Actually, it is seen from Fig. 6 that the best
value of p depends on U , and low PAPR can be achieved by
setting p between 10 to 100.

The effect of the number of RBU on PAPR is shown in
Fig. 7. The results ofDPTS forU > 8 cannot be obtained due
to extremely long computational time. As shown in Table 1,
the computational complexity of DPTS withU = 8 is almost
the same as that of the proposed method withU = 64. Then,
we can observe from Fig. 7 that the PAPR achieved by DPTS
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Fig. 7 Effect of the number of RBU on PAPR.

Fig. 8 PAPR convergence performance.

with U = 8 is higher than that by the proposed method with
U = 64. Note that this observation does not mean that DPTS
is always inferior to the proposed method. When U = 4,
DPTS is simpler than the proposed method, and its PAPR
is lower than that of the proposed method. For small U ,
DPTS has advantages over the proposed method although its
achievable PAPR is not low enough. The proposed method
still works for U > 8 since its computational complexity is
significantly low, and its PAPR decreases as U increases.
For large U, the proposed method is advantageous in both
complexity and PAPR performance.

Figure 8 shows the PAPR convergence curve. It is
seen that the proposed method achieves the PAPR of 7 dB
obtained byDPTSwith a few iterations, say I = 10. Also, the
proposed method can be superior to DPTS if more iterations
are allowed.

In Fig. 9, CCDFs of the DPTS and the proposed method
are shown for QPSK and 16QAM. The number of iterations
I was set such that the proposed method achieves CCDF
of 10−3 at PAPR0 of 7 dB. The PAPR performance of the
proposed method with U = 32 is almost the same as that of
DPTS with U = 8. Note that the computational complexity

Fig. 9 CCDF for QPSK and 16QAM.

Fig. 10 BER performance for QPSK and 16QAM.

of the proposed method with U = 32 is lower than that of
DPTS with U = 8 as shown in Table 1.

Figure 10 illustrates the BER performances of the pro-
posed method for QPSK and 16QAM. We assumed the use
of a solid state power amplifier (SSPA) with AM/AM con-
version characteristics g(x) = x/[1 + ( x

A )2ρ]
1

2ρ where x is
the amplitude of input signal, A is the output saturation level
and the parameter ρ controls the smoothness. We set ρ = 2.
To reduce nonlinear distortion in the output signal, the input
back off was set 7 dB. The performance of the ideal case
with no distortion is also shown. The performance of the
proposed method with R = 1.0 (θlim = π/4) is poor because
the tentative data decision in (26) is susceptible to the chan-
nel noise. As R decreases (θlim decreases), the performance
improves for both QPSK and 16QAM due to insusceptibility
to the channel noise.

We show the PAPR performance for various R in
Fig. 11. Unlike the BER performance in Fig. 10, the PAPR
performance degrades as the limiting factor R decreases be-
cause the phase factors should be taken from a narrower
range. To explicitly examine the trade-off between the BER
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Fig. 11 CCDF for various limiting factor R.

Fig. 12 Effect of the limiting factor R on PAPR and BER.

performance and the PAPR reduction performance, both per-
formances are shown for a wider range of R in Fig. 12 where
Eb/N0 = 40 dB. In practice, R is chosen by taking into ac-
count the tradeoff between BER and PAPR. In this example,
R = 0.8 might be a good choice because the BER degrada-
tion is not serious if R ≤ 0.8 and the PAPR degradation is
less than 1 dB if R ≥ 0.8.

Figure 13 shows the effect of the number of RB U on
BER where Eb/N0=40 dB. For R < 1.0, the performance
improves as U decreases because then Nb increases and the
averaging in (28) is more effective. For R = 1.0, the aver-
aging is not effective anymore due to undesirable tentative
data decision errors.

6. Conclusion

In this paper, we proposed a PAPR reduction method based
on p-norm minimization. It was shown that the proposed
method can achieve the desired PAPR characteristic by de-
termining continuous-valued phase factors with small com-
putational load even if the number of RB is large. In addition,
we proposed a phase factor estimationmethodwithout SI and

Fig. 13 Effect of the number of RBU on BER.

pilot symbols. It was shown that the proposed methods can
provide satisfactory BER performance by limiting the range
of the phase factors properly.

Unfortunately, it is not easy to apply the proposed phase
estimationmethod to higher orderQAM.Because the estima-
tion procedure becomes complicated and the computational
complexity increases as the number of decision regions in-
creases. It is important to overcome this problem for low-cost
implementation ofOFDM-based high-speed communication
systems. Moreover, it is worth studying the convergence
analysis and the initial value setting issue.

References

[1] S.H. Han and J.H. Lee, “An overview of peak-to-average power ra-
tio reduction techniques for multicarrier transmission,” IEEE Trans.
Wireless Commun., vol.12, pp.56–65, April 2005.

[2] Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduc-
tion in OFDM systems: A survey and taxonomy,” IEEE Commun.
Surveys Tuts., vol.15, no.4, pp.1567–1592, March 2013.

[3] J. Tellado and J.M. Cioffi, “Peak power reduction for multicarrier
transmission,” Proc. IEEE CTMC GLOBECOM’98, pp.219–224,
Sydney, Australia, Nov. 1998.

[4] R.W. Bauml, R.F.H. Fisher, and J.B. Huber, “Reducing the peak-to-
average power ratio ofmulticarriermodulation by selectedmapping,”
Electron. Lett., vol.32, no.22, pp.2056–2057, Oct. 1996.

[5] S.H. Müller and J.B. Huber, “A novel peak power reduction scheme
for OFDM,” Proc. 1997 IEEE 8th Int. Symp. on Personal, Indoor and
Mobile Radio Commun. (PIMRC), pp.1090–1094, 1997.

[6] L.J. Cimini, Jr. and N.R. Sollenberger, “Peak-to-average power ratio
reduction of anOFDMsignal using partial transmit sequences,” IEEE
Commun. Lett., vol.4, no.3, pp.86–88, March 2000.

[7] S.H. Han and J.H. Lee, “PAPR reduction of OFDM signals using
a reduced complexity PTS technique,” IEEE Signal Process. Lett.,
vol.11, no.11, pp.887–890, Nov. 2004.

[8] N. Taspinar, A. Kalinli, and M. Yildirim, “Partial transmit sequences
for PAPR reduction using parallel tabu search algorithm in OFDM
systems,” IEEE Commun. Lett., vol.15, no.9, pp.974–976, Sept.
2011.

[9] C. Tellambura, “Improved phase factor computation for the PAR
reduction of an OFDM signal using PTS,” IEEE Commun. Lett.,
vol.5, no.4, p.135–137, April 2001.

[10] E. Hong, H. Kim, and D. Har, “PAPR reduction by a single adaptive
all-pass filter for OFDM systems,” IEICE Electron. Express, vol.8,

http://dx.doi.org/10.1109/mwc.2005.1421929
http://dx.doi.org/10.1109/mwc.2005.1421929
http://dx.doi.org/10.1109/mwc.2005.1421929
http://dx.doi.org/10.1109/surv.2013.021313.00164
http://dx.doi.org/10.1109/surv.2013.021313.00164
http://dx.doi.org/10.1109/surv.2013.021313.00164
http://dx.doi.org/10.1049/el:19961384
http://dx.doi.org/10.1049/el:19961384
http://dx.doi.org/10.1049/el:19961384
http://dx.doi.org/10.1109/pimrc.1997.627054
http://dx.doi.org/10.1109/pimrc.1997.627054
http://dx.doi.org/10.1109/pimrc.1997.627054
http://dx.doi.org/10.1109/4234.831033
http://dx.doi.org/10.1109/4234.831033
http://dx.doi.org/10.1109/4234.831033
http://dx.doi.org/10.1109/lsp.2004.833490
http://dx.doi.org/10.1109/lsp.2004.833490
http://dx.doi.org/10.1109/lsp.2004.833490
http://dx.doi.org/10.1109/lcomm.2011.072911.110999
http://dx.doi.org/10.1109/lcomm.2011.072911.110999
http://dx.doi.org/10.1109/lcomm.2011.072911.110999
http://dx.doi.org/10.1109/lcomm.2011.072911.110999
http://dx.doi.org/10.1109/4234.917092
http://dx.doi.org/10.1109/4234.917092
http://dx.doi.org/10.1109/4234.917092
http://dx.doi.org/10.1587/elex.8.1633
http://dx.doi.org/10.1587/elex.8.1633


864
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

no.19, pp.633–1639, Oct. 2011.
[11] S. Khademi andA.-J. van der Veen, “Constant modulus algorithm for

peak-to-average power ratio (PAPR) reduction in MIMO OFDM/A,”
IEEE Signal Process. Lett., vol.20, no.5, pp.531–534, May 2013.

[12] M. Breiling, S.H. Müller, and J.B. Huber, “SLM peak-power reduc-
tion without explicit side information,” IEEE Commun. Lett., vol.5,
no.6, pp.239–241, June 2001.

[13] T. Fujii and M. Nakagawa, “Weighting factor estimation methods
for partial transmit sequences OFDM to reduce peak power,” IEICE
Trans. Commun., vol.E85-B, no.1, pp.221–230, Jan. 2002.

[14] A.D.S. Jayalath and C. Tellambura, “SLM and PTS peak-power re-
duction of OFDM signals without side information,” IEEE Trans.
Wireless Commun., vol.4, no.5, pp.2006–2013, Sept. 2005.

[15] L. Guan, T. Jiang, D. Qu, and Y. Zhou, “Joint channel estimation
and PTS to reduce peak-to-average-power ratio in OFDM systems
without side information,” IEEE Signal Process. Lett., vol.17, no.10,
pp.883–886, Oct. 2010.

[16] S. Janaaththanan, C. Kasparis, and B.G. Evans, “A gradient based
algorithm for PAPR reduction of OFDM using tone reservation
technique,” Proc. 2008 IEEE Veh. Technol. Conf. (VTC)-Spring,
pp.2977–2980, Singapore, May 2008.

[17] P. Yang, Y. Xiao, and S. Li, “An improved gradient-based PAPR re-
ductionmethod for space shift keying (SSK)-OFDMsystems,” IEICE
Trans. Commun., vol.E94-B, no.12, pp.3532–3539, Dec. 2011.

[18] H. Wang, Y. Lin, and B. Chen, “Data-efficient blind OFDM channel
estimation using receiver diversity,” IEEE Trans. Signal Process.,
vol.51, no.10, pp.2613–2623, Oct. 2003.

Moeko Yoshida received the B.Eng. and
M.Eng. degrees in electrical and electronic engi-
neering from Ibaraki University, Hitachi, Japan
in 2015 and 2017, respectively. In 2017,
she joined JVCKENWOOD Engineering Corp.,
Yokohama, Japan. Her research interests include
signal processing for wireless communications.

Hiromichi Nashimoto received the B.Eng.
and M. Eng. degrees in electrical and electronic
engineering from Ibaraki University, Hitachi,
Japan in 2013 and 2015, respectively. In 2015,
he joined Nippon Signal Co. Ltd. His research
interests include signal processing for wireless
communications.

Teruyuki Miyajima received the B.Eng.,
M.Eng., andPh.D. degrees in electrical engineer-
ing from Saitama University, Saitama, Japan, in
1989, 1991, and 1994, respectively. In 1994, he
joined Ibaraki University, Hitachi, Japan, where
he is currently a professor in the Department of
Electrical and Electronic Engineering. His cur-
rent interests are in signal processing for wireless
communications. Dr. Miyajima is a member of
IEEE.

http://dx.doi.org/10.1587/elex.8.1633
http://dx.doi.org/10.1587/elex.8.1633
http://dx.doi.org/10.1109/lsp.2013.2254114
http://dx.doi.org/10.1109/lsp.2013.2254114
http://dx.doi.org/10.1109/lsp.2013.2254114
http://dx.doi.org/10.1109/4234.929598
http://dx.doi.org/10.1109/4234.929598
http://dx.doi.org/10.1109/4234.929598
http://search.ieice.org/bin/summary.php?id=e85-b_1_221
http://search.ieice.org/bin/summary.php?id=e85-b_1_221
http://search.ieice.org/bin/summary.php?id=e85-b_1_221
http://dx.doi.org/10.1109/twc.2005.853916
http://dx.doi.org/10.1109/twc.2005.853916
http://dx.doi.org/10.1109/twc.2005.853916
http://dx.doi.org/10.1109/lsp.2010.2066562
http://dx.doi.org/10.1109/lsp.2010.2066562
http://dx.doi.org/10.1109/lsp.2010.2066562
http://dx.doi.org/10.1109/lsp.2010.2066562
http://dx.doi.org/10.1109/vetecs.2008.315
http://dx.doi.org/10.1109/vetecs.2008.315
http://dx.doi.org/10.1109/vetecs.2008.315
http://dx.doi.org/10.1109/vetecs.2008.315
http://dx.doi.org/10.1587/transcom.e94.b.3532
http://dx.doi.org/10.1587/transcom.e94.b.3532
http://dx.doi.org/10.1587/transcom.e94.b.3532
http://dx.doi.org/10.1109/tsp.2003.816879
http://dx.doi.org/10.1109/tsp.2003.816879
http://dx.doi.org/10.1109/tsp.2003.816879

