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Abstract: In this paper, we propose a semi-blind channel estimation

method for faster-than-Nyquist (FTN) signaling. The proposed method

combines the least-squares (LS) method using training symbols with a blind

estimation method using knowledge of the pulse shape. It is shown that the

proposed semi-blind method requires fewer training symbols than the LS

method, and it is superior to the blind method regardless of the packing ratio

of FTN signaling.
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1 Introduction

Faster-than-Nyquist (FTN) signaling is a non-orthogonal transmission scheme that

sends pulses at a rate greater than the Nyquist rate, and it can increase the data rate

without expanding bandwidth. However, due to the non-orthogonal nature, FTN

signaling essentially suffers from inter-symbol interference (ISI). In frequency-

selective channel scenarios, the effect of ISI is significant, so a powerful and robust

equalizer is necessary. To date, several equalization methods for FTN signaling

have been proposed [1, 2, 3]. Because the performance of these equalization

methods depends on the accuracy of the estimated channel, channel estimation is

a critical task for FTN signaling.

It is inefficient to estimate the total channel composed of a frequency-selective

physical channel and a Nyquist pulse. Because the receiver knows the pulse shape

used, it is sufficient to estimate only the physical channel [4, 5]. In [4], a frequency-

domain channel estimation method for cyclic-prefixed (CP) FTN signaling was

proposed. Training symbols embedded in the CP were used to estimate the channel

based on the minimum mean square error criterion. Its disadvantage is the data rate

loss caused by the insertion of CP. In [5], a time-domain channel estimation method

using a message-passing algorithm was proposed. In this method, joint channel

estimation and data decoding were performed in an iterative manner. To simplify

iterative processing, a channel estimate initially obtained by the least-squares (LS)

method using the training symbols was refined. Its disadvantage is the computa-

tional complexity increase due to the joint estimation/detection processing and the

iterative processing.

For Nyquist signaling, there have been various blind channel estimation

methods that require no training symbols; however, most of them attempt to

estimate the total channel. In [6], a blind estimation method that estimated only

the physical channel by using knowledge of the pulse shape was proposed, and

its superiority to the corresponding method that ignores the known pulse shape

was reported. Although this approach can be applied to FTN signaling in principle,

such studies have not yet been done.

In this paper, we propose a semi-blind channel estimation method for FTN

signaling, which is a combination of the LS estimation method using training

symbols and the blind estimation method in [6]. The proposed method can improve

the performance compared to the blind method with the help of training symbols,

and it can reduce the number of training symbols compared to the LS method.

2 System model

Fig. 1 shows the system model of FTN signaling. At the transmitter, data symbol

s½k� is transmitted after passing through a transmit filter gf ðtÞ every T ¼ �T0

seconds, where 0 < � � 1 is the packing ratio and T0 is the symbol period of

Nyquist signaling. The transmitted signal goes through an unknown frequency-

selective physical channel cðtÞ, which has finite support ½0; LT0Þ. At the receiver,

the received signal passed through a receive filter gf ðtÞ is given by

rðtÞ ¼
X
k

s½k�hðt � kT Þ þ �ðtÞ ð1Þ
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where hðtÞ ¼ R
cð�Þgðt � �Þd� is the “total” channel impulse response (IR) that

includes the physical channel cðtÞ and the combined transmit/receive filter

gðtÞ ¼ R
gf ð�Þgf ðt � �Þd�, which is a Nyquist pulse truncated to ½�NT0; NT0�. In

this case, �ðtÞ ¼ R
nð�Þgf ðt � �Þd� is a colored noise process with the autocorrela-

tion function E½�ðtÞ��ðt þ �Þ� ¼ N0gð�Þ, where nðtÞ is a complex-valued white

Gaussian random process of PSD N0

2
.

The received signal is oversampled with an interval of T
p, where p is an integer

oversampling factor. By defining rj½i� ¼ rðði þ j
pÞT Þ, hj½i� ¼ hðði þ j

pÞT Þ and

�j½i� ¼ �ðði þ j
pÞT Þ, we obtain the ðip þ jÞth received sample as

rj½i� ¼
X~Nþ ~L

l¼� ~N

hj½l�s½i � l� þ �j½i�; j ¼ 0; � � � ; p � 1 ð2Þ

where ~N ¼ dN� e if dN� e � N
� < p�1

p ; otherwise, ~N ¼ bN� c, and ~L ¼ dL�1� e if

dL�1� e � L�1
� < p�1

�p ; otherwise, ~L ¼ bL�1� c. We define the total channel vector as

h ¼ ½hT½� ~N� � � � hT½Lh � ~N � 1��T 2 C
Lhp�1, where h½l� ¼ ½h0½l� � � � hp�1½l��T

and Lh ¼ 2 ~N þ ~L þ 1. We can write the ith received sample vector r½i� ¼
½r0½i� � � � rp�1½i��T as

r½i� ¼ S½i�h þ �½i� ð3Þ
where S½i� ¼ ½ �S½i þ ~N� � � � �S½i � ~N � ~L�� 2 C

p�Lhp is the transmit symbol matrix

consisting of the diagonal matrices �S½d� 2 C
p�p whose diagonal elements are s½d�

and �½i� ¼ ½�0½i� � � � �p�1½i��T . Stacking r½i� over M symbols, we have

rM ¼ ½rT½i� � � � rT ½i �M þ 1��T ¼ SMh þ �M 2 C
Mp�1 ð4Þ

where SM ¼ ½ST½i� � � � ST ½i �M þ 1��T and �M ¼ ½�T½i� � � � �T ½i �M þ 1��T .
We define that cj½i� ¼ cðði þ j

pÞT Þ. The physical channel vector is defined as

c ¼ ½cT ½0� � � � cT ½ ~L��T 2 C
ð ~Lþ1Þp�1, where c½l� ¼ ½c0½l� � � � cp�1½l��T . The total

channel can be decomposed as h ¼ Gc, where the Nyquist pulse matrix G 2
R

Lhp�ð ~Lþ1Þp is a Toeplitz matrix whose first row is ½gð� ~NT Þ 0 � � � 0�T 2 R
1�ð ~Lþ1Þp

and first column is ½gð� ~NT Þ � � � gð ~NT Þ 0 � � � 0�T 2 R
Lhp�1. Then, we can rewrite

(4) as rM ¼ SMGc þ �M. Our goal is to estimate the unknown physical channel c

from rM rather than the total channel h using knowledge of the pulse shape G and

a few training symbols SM.

3 Semi-blind channel estimation method

First, we consider the LS estimation of the physical channel. The LS estimation ĉLS

is obtained by minimizing the squared error krM � SMGĉk2. The estimation ĉLS

satisfies the following equation:

Fig. 1. System model.
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SMGĉLS ¼ rM: ð5Þ
If SMG has full column rank, the LS estimation is obtained by

ĉLS ¼ ðGHSHMSMGÞ�1SHMGHrM: ð6Þ
Note that SMG has full column rank only if M � ~L þ 1, and the matrix SM consists

of Lh þM � 1 ¼ 2 ~N þ ~L þM training symbols. Thus, the minimum number of

training symbols required for (6) is NLS ¼ 2ð ~N þ ~LÞ þ 1, which increases as the

channel IR length L increases or the packing ratio γ decreases.

Next, we consider a blind estimation method called subchannel matching [6].

Subchannel matching determines the subchannels ĥn½k� that satisfy the relationship

ĥn½k� � rm½k� ¼ ĥm½k� � rn½k� in noise-free environments, where � represents con-

volution. This leads to the problem ĥ ¼ argminkhk¼1 hH�h, where � ¼ E�EH .

Here, � is an Lhp � Lhp block matrix whose ði; jÞth block is
P

l≠iRll for i ¼ j

and �Rji for i ≠ j, where Rij ¼ E½~ri½k�~rHj ½k�� and ~rj½i� ¼ ½rj½i� rj½i � 1� � � �
rj½i � Lh þ 1��T ; and E ¼ ½E1 � � � Ep�, where Ei is an Lhp � Lh matrix whose

jth column is ½01�ðj�1Þp ei 01�ðLh�jÞp�T , and ei is a 1 � p unit vector whose ith entry

is 1. By using the decomposition h ¼ Gc, this problem can be modified to estimate

the physical channel as [6]

ĉblind ¼ arg min
kck¼1

cHGH�Gc: ð7Þ

Applying the eigenvector decomposition to GH�G, ĉblind can be found from the

eigenvector corresponding to the minimum eigenvalue. We will show in our

simulation that the performance of the blind method is unsatisfactory when channel

IR L is long.

Now, we propose a semi-blind method that combines the LS method in (5) with

the blind method in (7). We expect that the proposed method can improve the

performance of the blind method by using fewer training symbols than the LS

method. It is known that if the subchannels share no common zeros, the minimum

of cHGH�Gc in (7) is zero in noise-free environments. Thus, we rewrite the blind

estimation as
ffiffiffiffi
�

p
VHGc ¼ 0, where � is a diagonal matrix whose diagonal entries

are the eigenvalues of �, and the columns of V are the corresponding eigenvectors.

Then, we obtain the following semi-blind estimation:

SM

�
ffiffiffiffi
�

p
VH

" #
Gĉsemi ¼

rM

0

" #
ð8Þ

where � � 0 is the weighting factor. Solving (8) by a numerical method such as

Gaussian elimination, we obtain the semi-blind estimate ĉsemi. In (8), because

M � 1, the minimum number of the training symbols is Nsemi ¼ 2 ~N þ ~L þ 1, which

is less than NLS. Finally, we appropriately determine β by proposing the following

simple method:

� ¼ kSMkF
k ffiffiffiffi

�
p

VHkF
ð9Þ

where k � kF represents the Frobenius norm of a matrix. The choice of (9) attempts

to make the contribution of the blind estimation equal to that of LS.© IEICE 2019
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The computational complexity of the proposed method is dominated by the

computation of the eigenvalue decomposition of � and solving (8). The complexity

of these computations is proportional to ð ~L þ 1Þ3p3, which is almost the same as

that of (6) and (7).

4 Simulation

We evaluate the performance of the proposed semi-blind method in (8) by computer

simulation. The estimation performance is measured by the normalized mean

square error (NMSE) averaged over I trials

NMSE ¼
XI

i¼1 kGĉi � hik2XI

i¼1 khik
2

ð10Þ

where the subscript i indicates the ith trial. Unless otherwise stated, parameters used

in the simulation are as follows: modulation scheme QPSK, length of physical

channel IR L ¼ 10, roll-off factor � ¼ 0:7, Eb=N0 ¼ 30 dB, pulse truncation length

N ¼ 3, and number of trials I ¼ 105. The correlation matrices Rij are obtained by

averaging 200 received samples.

First, we compare the proposed semi-blind method with the LS method in (6).

Fig. 2(a) shows the NMSE performances versus Eb=N0 for various values of the

packing ratio γ and the roll-off factor α, where both methods use

NLS ¼ 2ð ~N þ ~LÞ þ 1 training symbols. It can be observed that the proposed semi-

blind method is superior to the LS method in all cases. In Fig. 2(b), the effect of the

number of training symbols is shown, where the minimum required numbers of

training symbols are NLS ¼ 31, Nsemi ¼ 20 for � ¼ 0:8 and NLS ¼ 41, Nsemi ¼ 26

for � ¼ 0:6. For reference, we also plotted the NMSE performances obtained by the

optimum β, which is determined by an exhaustive search over a range of values

� 2 ½0; 100�. The semi-blind method can achieve a lower NMSE using a fewer

number of training symbols compared to the LS method. Although the choice of

β in (9) is useful, there is little room for improvement.

Next, we compare the proposed semi-blind method, which uses the minimum

number of training symbols Nsemi ¼ 2 ~N þ ~L þ 1, with the blind method in (7). In

Fig. 3(a), the effect of the packing ratio γ is illustrated. The semi-blind method is

(a) Effect of FTN parameters. (b) Effect of the number of training symbols.

Fig. 2. Performance comparison with the LS method.
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significantly superior to the blind method. As for the semi-blind method, a lower

γ tends to exhibit a better NMSE performance. This might be because the choice of

β in (9) tends to be closer to the optimum β as γ decreases. Fig. 3(b) shows the

effect of the IR length of the physical channel L. The performance of the blind

method degrades significantly as L increases, while that of the semi-blind method is

almost independent of L.

5 Conclusion

In this paper, we proposed a semi-blind channel estimation method for FTN

signaling, which is a combination of a subchannel matching based blind method

and the LS method using training symbols. Our simulation results show that the

proposed method requires fewer training symbols than LS, and its performance is

not influenced significantly by the packing ratio and the length of the physical

channel impulse response, unlike the blind method. It would be interesting to use

the channel estimate obtained by the semi-blind method as an initial estimate for the

iterative estimation methods in [4, 5] to achieve further performance improvement.

(a) Effect of FTN parameters. (b) Effect of channel IR length L.

Fig. 3. Performance comparison with the blind method.
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