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Abstract: This paper proposes a novel distributed blind adaptive equalization algorithm for
sensor networks, in which each node estimates the data disturbed by inter-symbol interference
using time-domain filtering. We apply the minimum variance distortionless response, which is
known to be useful for centralized blind equalization, to distributed equalization with multiple
distortionless response constraints. Unlike conventional methods, in the proposed approach,
each node requires only one filter and sends one signal to the other nodes. Simulation results
show the superior performance of the proposed algorithm compared with the conventional
algorithm.
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1. Introduction
Distributed signal processing in wireless sensor networks, where distributed communication nodes
jointly perform data processing, has been extensively studied in recent years [1, 2]. In distributed
signal processing, even if some nodes become defective, the network can still be reconfigured by the
remaining nodes. A significant advantage of this method is that it does not require a fusion center,
which is critical for centralized signal processing; therefore, devices can be simpler.

Distributed equalization/estimation has been extensively studied, and it is worth investigating fur-
ther [3–7]. Its potential applications are widespread in many areas, such as environmental monitoring,
factory automation, and drone communications. In distributed equalization [7], each node that is dis-
tributed over a wide area ranging from a few meters to several hundred meters estimates the data
symbols that are broadcast by the source. The data symbols suffer from inter-symbol interference
(ISI), which is caused by signal propagation through a frequency-selective channel from the source to
each node. Each node performs time-domain equalization using an adaptive finite-impulse response
(FIR) filter to suppress ISI, and communicates with its neighboring nodes to accomplish equaliza-
tion in a distributed manner. A disadvantage of most existing methods is that they require the
transmission of training (reference) signals that waste valuable bandwidth resources.

Distributed blind adaptive equalization has received significant attention because it avoids the trans-
mission of bandwidth-consuming training signals. Thus far, various adaptive algorithms have been
proposed in the literature [7–11]. Abdolee et al. [7] proposed a distributed equalization algorithm based
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Fig. 1. System model of distributed equalization.

on the constant modulus criterion and demonstrated its superiority over the corresponding centralized
equalization algorithm. Bertrand et al. [8] proposed a linearly constrained minimum-variance-based
distributed beamforming method that actively exploits the spatial diversity introduced by the dis-
tributed nodes. Yu et al. [9] proposed an indirect distributed equalization method where the channels
are estimated first; then, the equalizers are determined recursively. A common disadvantage of the
above approaches is that the nodes need to exchange many continuous-valued signals, such as their
received signals, their filter coefficients, and estimated channels. This exchange requires significant
computation and communication resources. Liu et al. [10] proposed the distributed generalized Sato
algorithm (d-GSA), which requires sending only one signal per node. It was reported that the per-
formance of the d-GSA degrades with the increasing number of differences in the channels between
the source and other nodes. This limits its applicability because each channel varies depending on
whether the nodes are randomly distributed over a wide area. Sugitani et al. [11] proposed a dis-
tributed mutually referenced equalization (d-MRE) algorithm, in which all the channels are assumed
to be different from each other. It was reported that the performance of d-MRE is much better than
that of d-GSA. However, the d-MRE has two disadvantages: 1) each node requires two FIR filters
and sends two signals to other nodes, and 2) the bit error performance is not satisfactory, even in the
presence of many nodes.

The minimum variance distortionless response (MVDR) principle is known to achieve excellent bit
error performance for centralized blind equalization [13]. As MVDR imposes a single distortionless
response constraint for all nodes, it requires a fusion center that collects all the received signals of the
nodes. Hence, it cannot be applied to distributed equalization as is. To the best of our knowledge,
the application of MVDR to distributed equalization has not been previously reported.

In this study, we apply the MVDR principle to distributed equalization by decomposing a single
constraint into multiple constraints and deriving an adaptive equalization algorithm. The proposed
algorithm is simpler than the d-MRE because each node requires only one FIR filter and sends one
signal to the other nodes. Simulation results reveal that the bit error performance of the proposed
algorithm is superior to that of the d-MRE.

2. Problem formulation
2.1 Communication model
Let us consider a networked system with K distributed nodes and one single source (see Fig. 1).
A data symbol sn, which is sent from the source at time n, passes through the frequency-selective
channels, thereby causing ISI. Then, the received signal at time n by the kth node is given by

yk,n =
L∑

j=0

hk,jsn−j + vk,n = hk,dsn−d +
L∑

j=0
j �=d

hk,jsn−j + vk,n, k = 1, 2 . . . K, (1)
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where hk,j is the impulse response of the channel from the source to the kth node, L is the order of the
channel impulse responses, vk,n is the additive white Gaussian noise, and d is the decision delay that
affects the system performance. On the rightmost side of (1), the first and second terms represent
the desired component and the ISI component, respectively.

Each node has one adaptive FIR filter with length M , and processes its received signal yk,n by the
filter as follows:

zk,n =
M−1∑
j=0

g∗k,jyk,n−j = gH
k yk,n, (2)

where gk,j is the filter coefficient of the FIR filter, gk = [gk,0 . . . gk,M−1]T ∈ CM×1, and yk,n =
[yk,n . . . yk,n−M+1]T ∈ CM×1. Here, the superscripts T and H denote the transpose and the conjugate
transpose of a vector (matrix), respectively. For convenience, we represent yk,n in a matrix form as

yk,n = Hksn + vk,n, (3)

where Hk =

⎡
⎢⎢⎣
hk,0· · ·hk,L· · · 0

...
. . .

. . .
. . .

...

0 · · · hk,0 · · ·hk,L

⎤
⎥⎥⎦ is an M × (L + M) Toeplitz matrix, sn = [sn . . . sn−M−L+1]T ∈

C(L+M)×1, and vk,n = [vk,n . . . vk,n−M+1]T ∈ CM×1. The purpose of the FIR filter is to suppress the
effect of ISI for the proper estimation of the data symbol sn−d. To suppress ISI, the filter coefficients
gk should be updated appropriately using the adaptive algorithm described in Sect. 3.2.

Each node obtains the averaged filter output defined by zn = 1
K

∑K
k=1 zk,n by the average consensus

technique described in Sect. 2.2. By making hard decision on zn, we obtain the estimation ŝn−d of the
data symbol sn−d. As described later, the average zn is necessary for updating the filter coefficients.

2.2 Average consensus
We assume that each node is not always wirelessly connected with the other nodes located far from it.
Thus, in some network topologies, the nodes cannot obtain zn directly. The deployment of a fusion
center to obtain zn is undesirable in terms of complexity increase. To overcome this issue, we apply an
average consensus technique [12] to estimate zn at each node in an iterative manner without a fusion
center. Let zk,n[t] be the estimate of zn in the kth node at the tth iteration. The kth node sends
one signal zk,n[t] to the neighbor nodes through wireless links, and receives zi,n[t] of the neighbor
nodes i ∈ Nk, where Nk is the set of nodes wirelessly connected to the kth node. In the following, we
assume that the communication channels between nodes are noiseless and distortionless. We set the
initial value as zk,n[0] = zk,n. Then, we update zk,n[t] iteratively as follows:

zk,n[t + 1] =
∑

i∈Nk

wk,izi,n[t], (4)

where wk,i is the link weight between the ith and kth nodes. Let us define the weight matrix as

W =

⎡
⎢⎢⎣

w1,1 . . . w1,K

... wk,k

...

wK,1 . . . wK,K

⎤
⎥⎥⎦ ∈ QK×K . If W satisfies the following conditions:

wi,j = 0 if j /∈ Ni, W1 = 1, 1T W = 1T , (5)

where 1 is the all-one vector, zk,n[t] converges to the average of the initial values of all nodes [12], such
as limt→∞ zk,n[t] = 1

K

∑K
i=1 zi,n[0] = 1

K

∑K
i=1 zi,n = zn. As a result, all nodes can obtain the average

filter output zn, even if all nodes are not always connected to each other. Note that because nodes
only communicate with their neighboring nodes, which are close to each other, they do not consume
large amounts of resources to achieve average consensus.
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3. Equalization algorithm

3.1 Centralized blind equalization
The kth node has one FIR filter gk and its output, zk,n in (2), can be represented by three components,
namely the desired output, ISI, and noise components, as follows:

zk,n = gk
H h̃k,d+1sn−d︸ ︷︷ ︸

desired

+gk
HH̃ks̃n︸ ︷︷ ︸
ISI

+gk
Hvk,n︸ ︷︷ ︸
noise

, (6)

where h̃k,d+1 = [0 . . . 0︸ ︷︷ ︸
(d−L)

hk,L . . . hk,0 0 . . . 0︸ ︷︷ ︸
(M−d−1)

]T is the d + 1th column of Hk, H̃k is the remaining part

of Hk, s̃n denotes a vector obtained by deleting sn−d from sn, and d is the decision delay satisfying
M ≥ d + 1 ≥ L + 1. Here, we consider how to update the adaptive filter gk to suppress the ISI
component without the knowledge of Hk and the use of training symbols.

To obtain the filters gk blindly for the distributed equalization, we apply the MVDR princi-
ple [13] developed for centralized blind equalization. Suppose that we obtain the averaged filter
output zn = 1

K gHyn after achieving the average consensus, where g = [gT
1 . . .gT

K ]T ∈ CKM×1 and
yn = [yT

1,n . . .yT
K,n]T ∈ CKM×1. According to [13], the filter coefficient g is determined such that the

filter output variance is minimized under a single constraint,

min
g

E[|zn|2], s.t. gH h̃d+1 = 1, (7)

where h̃d+1 = [h̃T
1,d+1 · · · h̃T

K,d+1]
T . The constraint in (7) comes from the distortionless response con-

dition that guarantees that the desired component in zk,n is distortionless, that is,
∑K

k=1 gH
k h̃k,d+1 = 1.

The solution to (7) is given by [13]

gSCMVDR =
(
h̃H

d+1R
−1
y h̃d+1

)−1
R−1

y h̃d+1, (8)

where Ry = E[ynyH
n ]. Because the channel h̃d+1 is unknown in advance, it should be estimated in a

blind manner. Let us parameterize h̃d+1 as h̃d+1 = C̄ĥ where

C̄ = diag{C . . .C︸ ︷︷ ︸
K

}, C =

⎡
⎢⎣

0(d−L)×(L+1)

J(L+1)×(L+1)

0(M−d−1)×(L+1)

⎤
⎥⎦ , J =

⎡
⎢⎢⎣

0 1

. .
.

1 0

⎤
⎥⎥⎦ ,

and ĥ is the estimation of the channel vector h defined by h=[hT
1 · · · hT

K ]T with hk =[hk,0 · · · hk,L]T .
The estimation ĥ that maximizes the minimum variance achieved by (8) is obtained by the eigenvector
corresponding to the minimum eigenvalue of the matrix C̄HR−1

y C̄. We refer to gSCMVDR as the single-
constrained MVDR (SC-MVDR).

It is impossible to obtain the SC-MVDR in a distributed manner because the single constraint
is related to all nodes. Therefore, we propose to decompose the single constraint of SC-MVDR
into multiple sub-constraints suitable for distributed equalization without a fusion center, each of
which corresponds to each node response. Specifically, we impose K constraints gH

k h̃k,d+1 = 1 for
k = 1, . . . , K. The constraints guarantee that the desired component in zk,n in (6) is distortionless.
Because h̃k,d+1 is unknown in advance, we introduce the unknown constant column vectors uk. We
consider the following problem:

min
g1...gK

E[|zn|2], s.t. CHgk = uk, k = 1, 2 . . .K. (9)

The unknown vector uk guarantees a constant response to the desired component, specifically
gH

k h̃k,d+1 = gH
k Chk = uH

k hk = constant, where hk = [hk,0 · · · hk,L]T . To solve it, we derive a
Lagrange function of (9) as

J1(g) = E[|zn|2] +
K∑

k=1

[λH
k (CHgk − uk) + (gH

k C − uH
k )λk]. (10)
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where λk is the corresponding Lagrange multiplier. The filter minimizing J1(g) is given by

gMCMVDR = R−1
y C̄(C̄HR−1

y C̄)−1u. (11)

The vector u is determined to maximize the minimum variance achieved by (11). The maximization
can be achieved by solving the following problem.

max
u

J1(gMCMVDR) = max
u

uH(C̄HR−1
y C̄)−1u

uHu
. (12)

The solution to (12) is a normalized eigenvector corresponding to the minimum eigenvalue of
(C̄HR−1

y C̄)−1. We refer to gMCMVDR as the multiple-constrained MVDR (MC-MVDR). Inter-
estingly, the MC-MVDR filter (11) has a similar form as the filter based on the generalized sidelobe
canceller principle in [13]. According to the discussion in [13, 14], the parameter vector u may converge
to the channel vector h as the signal-to-noise ratio (SNR) increases. We confirm this numerically in
Sect. 4.

3.2 Distributed blind adaptive equalization
It should be noted that MC-MVDR cannot be implemented in a distributed manner because it requires
Ry, depending on all the received signals. By implementing MC-MVDR adaptively, we can avoid the
computation of Ry. Based on the adaptive algorithm for SC-MVDR proposed in [14], we derive an
adaptive algorithm for MC-MVDR, which works in distributed equalization without a fusion center.
We apply the stochastic gradient method to minimize J1 with respect to gk and maximize J1 with
respect to uk. In the following, we assume that the average filter output zn can be obtained by the
average consensus where each node sends one signal zk,n[t] to the neighbor nodes. Then, we obtain
the following updating equations:

gk[n + 1] = gk[n] − μg∇g∗
k
J1

= gk[n] − μg

(
1
K

E[yk,nz∗k,n] + Cλk[n]
)

, (13)

uk[n + 1] = uk[n] + μu

(
I2(L+1) − uk[n]uH

k [n]
uH

k [n]uk[n]

)
∇u∗

k
J1

= uk[n] − μu

(
I2(L+1) − uk[n]uH

k [n]
uH

k [n]uk[n]

)
λk[n], (14)

where μg and μu are the step gains, and I denotes the identity matrix. In (14), we need to project
∇u∗

k
J1 onto the space orthogonal to uk[n]. In (13) and (14), λk[n] is also updated. Suppose that it

holds CHgk[n + 1] = uk[n]. Then, multiplying both sides of (13) by CH , we obtain

λk[n] =
1
μg

(
CHgk[n] − μg

1
K

CHE[yk,nz∗k,n] − uk[n]
)

, (15)

because CHC = I. Substituting (15) into (13) and (14), and using an instantaneous approximation
of the expectation, the updating equations become

gk[n + 1] = gk[n] − μg

{
1
K

yk,nz∗k,n + C
(

1
μg

(
CHgk[n] − μg

1
K

CHyk,nz∗k,n − uk[n]
))}

=
(
I2M − CCH

) (
gk[n] − μg

1
K

yk,nz∗k,n

)
+ Cuk[n] (16)

uk[n + 1] = uk[n] +
μu

μg

(
I2(L+1) − uk[n]uH

k [n]
uH

k [n]uk[n]

) {
μg

1
K

CHyk,nz∗k,n − CHgk[n]
}

. (17)

We normalize uk[n] at each iteration as

uk[n + 1] =
uk[n + 1]

‖uk[n + 1]‖ . (18)

The proposed algorithm can be summarized as follows:
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Step 1: n = 0, initialize gk[0] and uk[0], determine the step gain μg, μu, the number of iterations
R for average consensus, and the number of iterations I for equalization.
Step 2: Obtain the filter output zk,n using (2).
Step 3: Set zk,n[0] = zk,n and update zk,n[t + 1] R times by using (4) to obtain zk,n[R] while
sending zk,n[t] to the neighbor nodes. By making hard decision on zk,n[R], we obtain the data
symbol estimation ŝn−d.
Step 4: Set zk,n = zk,n[R], and update the filter coefficients according to (16), (17), and (18).
Step 5: n = n + 1, return to Step 2 until n reaches I.

In the following, we refer to the proposed algorithm as the distributed MVDR (d-MVDR) algorithm.
Here, some comments are made regarding the d-MVDR algorithm. First, as can be seen in (16)

and (17), each node does not require the received signals of the other nodes, unlike the centralized
equalizer described in Sect. 3.1. In addition, the d-MVDR algorithm requires no training symbols to
update the filters. That is, the d-MVDR algorithm can be regarded as a blind adaptive algorithm for
distributed equalization. Second, each node uses only one FIR filter gk and sends only one signal zk,n

to the other nodes. This simplicity is the major advantage compared to the conventional approach.
Third, we can expect superior bit error performance because multiple constraints can enhance the
desired component. This is in contrast to the conventional d-MRE [11], which considers only ISI
suppression, disregarding the desired component enhancement.

4. Simulation results
This section numerically confirms the validity of the proposed d-MVDR algorithm. The received SNR
is defined as SNR = K

σ2
sp0
σ2

v
, where σ2

s = E[|sn|2] is the transmitted signal power, σ2
v = E[|vk,n|2] is the

noise variance, and p0 =
∑L

j=0 E[|hk,j |2]. Unless otherwise noted, we used the following simulation pa-
rameters: the modulation scheme is quadrature phase-shift keying (QPSK), the channel order L = 2,
the filter length M = 7, the number of nodes K = 5, SNR = 16dB, the decision delay d = 4, the trans-
mitted signal power σ2

s = 1, and we chose the step gain from μg = μu ∈ {0.005, 0.01, 0.02, 0.05, 0.1}
such that the lowest bit error rate (BER) is achieved. The BER was computed by averaging the error
bits over 103 trials, each with 103 QPSK symbols. Each trial has different channels where hk,j were
generated as complex Gaussian random variables with zero mean and variance σ2

h = 1.
First, we consider the BER performance of the centralized equalizers, which can be regarded as

the lowest BER achieved by the distributed equalizers. Figure 2 shows the BER performances of
SC-MVDR in (8), MC-MVDR in (11), and the minimum mean-squared error (MMSE) equalizer. The
performance of SC-MVDR, which can be constructed blindly, is almost the same as that of MMSE,
which requires either the transmission of the training symbols or a knowledge of the channels. From
the comparison between SC-MVDR and MC-MVDR, it can be confirmed that there is a 2-dB loss
due to the use of multiple constraints.

Fig. 2. BER performance comparison of centralized equalizers.
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Next, we confirm whether the parameter vector u converges to the channel vector h. Figure 3
shows the channel estimation performance as a function of SNR and the number of nodes K, where
the channel estimation error is defined as ε = E[‖u− hHu

‖h‖2 h‖2]. It can be confirmed that the estimation
error decreases as either K or SNR increases. As shown later, the channel estimation improvement
results in an equalization performance improvement as either K or SNR increases.

Fig. 3. Effect of the number of nodes and SNR on the channel estimation
error.

In the following, we consider the performance of the proposed d-MVDR algorithm. We assume that
K = 5 nodes are located on a line. We employ the Metropolis–Hasting weights [12] given by

wi,j =

⎧⎪⎪⎨
⎪⎪⎩

1
1+max{di,dj} j ∈ Ni

1 − ∑
i�=j wi,j j = i

0 otherwise

where dk represents the number of nodes connected to the kth node. The convergence property of
the average consensus is demonstrated in Fig. 4. We chose the number of iterations for equalization
I = 5 × 103, and the step gain μg = μu = 0.02. As the number of iterations for average consensus R

increases, the BER decreases and converges after at most R = 15 iterations. Thus, in the following
simulations, we set R = 15.

Fig. 4. Convergence property of average consensus.

Figurer 5 shows the influence of the decision delay d, where I = 5 × 103, μg = μu = 0.02, and d is
chosen such that it satisfies the condition M ≥ d + 1 ≥ L + 1. This simulation result shows that the
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Fig. 5. Influence of decision delay d.

decision delay significantly influences the performance, and the best choice is d = 4, which provides
the minimum bit error rate. It coincides with a heuristic choice d = �L+M

2 � = 4, which was employed
in the literature on channel equalization [15], where �·� denotes the floor function. Intuitively, the
choice allows us to combine delayed waves to achieve multipath diversity efficiently. The adjustable
decision delay is a major factor in the superior performance of the proposed algorithm compared to
the conventional d-MRE [11], in which the delay cannot be adjusted and was forced to be d = 0.

Figure 6 shows the influence of the length of filter M , where the decision delay is chosen as d =
�L+M

2 �. The other simulation parameters are I = 5×103 for 3 ≤ M ≤ 7, 2×104 for 8 ≤ M ≤ 12, and
μg = μu = 0.02 for 3 ≤ M ≤ 7, 0.005 for 8 ≤ M ≤ 12. There is a performance gap between M = 4
and 5. The reason might be that frequency diversity is more pronounced for M ≥ 5. From this figure,
M should be at least 5. The optimization of the filter length M by considering the performance and
complexity is worth investigating in the future.

Fig. 6. Influence of the length of filter M .

Figure 7 shows the convergence property of adaptive distributed algorithms, where the proposed
d-MVDR used μg = μu = 0.02, and d-MRE [11] used the step gain μ = 0.02 and the delay parameter
P = 8. We can observe that d-MVDR converges at I = 5× 103 iterations. However, the performance
of d-MRE does not improve as the number of iterations increases.

Figure 8 shows the BER performance comparison where the simulation parameters are summarized
in Table I. We can observe that the performance of the proposed d-MVDR is slightly worse than
that of MC-MVDR. Because the performance gap is due to the fluctuation of gk and uk, it could be
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Fig. 7. Convergence property of distributed adaptive algorithms.

Table I. Simulation parameters.

Algorithm d-MRE d-MVDR
Number of iterations for equalizaiotn I 5 × 103 5 × 103

Step gain μ = 0.02 μg = μu = 0.02
Delay of referenced filter P 8 -

Decision delay d 0 4

Fig. 8. BER performance comparison.

reduced by adjusting the step sizes dynamically. The figure also reveals that the proposed d-MVDR
is significantly better than d-MRE.

Figure 9 shows the influence of the number of nodes K, where R = 10 for K = 3, R = 15 for K = 5,
and R = 50 for K = 10; I = 2 × 103 for K = 3, I = 5 × 103 for K = 5, and I = 4 × 104 for K = 10;
μg = μu = 0.05 for K = 3, μg = μu = 0.02 for K = 5, and μg = μu = 0.005 for K = 10. This result is
consistent with Fig. 3; the BER performance improves as K increases owing to the reduction of the
channel estimation error and the increase in spatial diversity.

5. Conclusion
This study proposed a distributed equalization method based on the MVDR principle, and derived
a blind adaptive algorithm. The complexity of the proposed algorithm is simpler than that of a
conventional algorithm, as each node requires only one FIR filter and sends only one signal. The
simulation results revealed that the performance of the proposed algorithm is significantly improved
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Fig. 9. Influence of the number of nodes K.

compared with that of a conventional algorithm.
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